The Damage Report

Civ: Beyond Earth with Mantle aims to end multi-GPU microstuttering
— 3:46 PM on October 23, 2014

The next installment in Sid Meier's Civilization series, Civilization: Beyond Earth, comes out tomorrow. The folks at AMD have been working with its developer, Firaxis, to optimize the game for Radeon graphics cards. Most notably, Firaxis and AMD have ported the game to work with AMD"s lightweight Mantle graphics API.

Predictably, AMD and Firaxis report that Mantle lowers the game's CPU overhead, allowing Beyond Earth to play smoother and deliver higher frame rates on many systems. They've even provided a nice bar graph with average FPS showing AMD in the lead, like so:

That's all well and good, I suppose (although *ahem* the R9 290X they used has 8GB of RAM). But average FPS numbers won't tell you about gameplay smoothness or responsiveness. What's more interesting is how AMD and Firaxis have tackled the thorny problem of multi-GPU rendering in Beyond Earth.

Both CrossFire and SLI, the multi-GPU schemes from AMD and Nvidia, handle the vast majority of today's games by divvying up frames between GPUs in interleaved fashion. Frame one goes to GPU one, frame two to GPU two, frame three back to GPU one, and so on. This technique is known as alternate-frame rendering (AFR). AFR does a nice job of dividing the workload between GPUs so that everything scales well for the benchmarks. Both triangle throughput and pixel processing benefit from giving each GPU its own frame.

Unfortunately, AFR doesn't always do as good a job of improving the user experience as it does of improving—or perhaps inflating— average FPS scores. The timing of frames processed on different GPUs can go out of sync, causing a phenomenon known as multi-GPU micro-stuttering. We've chronicled this problem in our initial FCAT article and, most extensively, in our epic Radeon HD 7990 review. AMD has attempted to fix this problem by pacing the delivery of frames to the display, much as Nvidia has done for years with its frame metering tech. But frame pacing is imperfect and, depending on how a game's internal simulation timing works, may lead to perfectly spaced frames that contain out-of-sync visuals.

Making AFR work well is a Hard Problem. It's further complicated by variable display refresh schemes like G-Sync and FreeSync that attempt to paint a new frame on the screen as soon as it's ready. Pacing those frames could be a hot mess.

In a similar vein, virtual reality headsets like the Oculus Rift are extremely sensitive to input lag, the delay between when a user's head turns and when a visual response shows up on the headset's display. If that process takes too long, the user may get vertigo and go all a-chunder. Inserting a rendering scheme like AFR with frame metering into the middle of that feedback loop is a bad proposition. Frame metering intentionally adds latency to some frames in order to smooth out delivery, and AFR itself requires deeper queuing of frames, which also adds latency.

At the end of the day, this collection of problems has conspired to make AFR—and multi-GPU schemes in general—look pretty shaky. AFR is fragile, requires tuning and driver support for each and every game, and doesn't always deliver the experience that its FPS results seem to promise. AMD and Nvidia have worked hard to keep CrossFire and SLI working well for their users, but we at TR only recommend buying multi-GPU solutions when no single GPU is fast enough for your purposes.

Happily, game developers and the GPU companies seem to be considering other approaches to delivering an improved experience with multi-GPU solutions, even if they don't over-inflate FPS averages. Nvidia vaguely hinted at a change of approach during its GeForce GTX 970 and 980 launch when talking about VR Direct, its collection of features aimed at the Oculus Rift and similar devices. Now, AMD and Firaxis have gone one better, throwing out AFR and implementing split-frame rendering (SFR) instead in the Mantle version of Beyond Earth.

AMD provided us with an explanation of their approach that's worth reading in its entirety, so here it is:

With a traditional graphics API, multi-GPU arrays like AMD CrossFire™ are typically utilized with a rendering method called "alternate-frame rendering" (AFR). AFR renders odd frames on the first GPU, and even frames on the second GPU. Parallelizing a game's workload across two GPUs working in tandem has obvious performance benefits.

As AFR requires frames to be rendered in advance, this approach can occasionally suffer from some issues:

·         Large queue depths can reduce the responsiveness of the user's mouse input

·         The game's design might not accommodate a queue sufficient for good mGPU scaling

·         Predicted frames in the queue may not be useful to the current state of the user’s movement or camera

Thankfully, AFR is not the only approach to multi-GPU. Mantle empowers game developers with full control of a multi-GPU array and the ability to create or implement unique mGPU solutions that fit the needs of the game engine. In Civilization: Beyond Earth, Firaxis designed a "split-frame rendering" (SFR) subsystem. SFR divides each frame of a scene into proportional sections, and assigns a rendering slice to each GPU in AMD CrossFire™ configuration. The "master" GPU quickly receives the work of each GPU and composites the final scene for the user to see on his or her monitor.

If you don’t see 70-100% GPU scaling, that is working as intended, according to Firaxis. Civilization: Beyond Earth’s GPU-oriented workloads are not as demanding as other recent PC titles. However, Beyond Earth’s design generates a considerable amount of work in the producer thread. The producer thread tracks API calls from the game and lines them up, through the CPU, for the GPU's consumer thread to do graphics work. This producer thread vs. consumer thread workload balance is what establishes Civilization as a CPU-sensitive title (vs. a GPU-sensitive one).

Because the game emphasizes CPU performance, the rendering workloads may not fully utilize the capacity of a high-end GPU. In essence, there is no work leftover for the second GPU. However, in cases where the GPU workload is high and a frame might take a while to render (affecting user input latency), the decision to use SFR cuts input latency in half, because there is no long AFR queue to work through. The queue is essentially one frame, each GPU handling a half. This will keep the game smooth and responsive, emphasizing playability, vs. raw frame rates.

Let me provide an example. Let's say a frame takes 60 milliseconds to render, and you have an AFR queue depth of two frames. That means the user will experience 120ms of lag between the time they move the map and that movement is reflected on-screen. Firaxis' decision to use SFR halves the queue down to one frame, reducing the input latency to 60ms. And because each GPU is working on half the frame, the queue is reduced by half again to just 30ms.

In this way the game will feel very smooth and responsive, because raw frame-rate scaling was not the goal of this title. Smooth, playable performance was the goal. This is one of the unique approaches to mGPU that AMD has been extolling in the era of Mantle and other similar APIs.

All I can say is: thank goodness. Let's hope we see more of this kind of thing from AMD and major game studios in the coming months and years. Multi-GPU solutions don't have to double their FPS averages in order to achieve smoother animations or improved responsiveness. I'd much rather see a multi-GPU team producing more modest increases that the user can actually feel and experience.

Of course, while we're at it, I'll note that if you measure frame times instead of FPS averages, you can more often capture the true improvement offered by mGPU solutions. AMD has been a little slower than Nvidia to adopt a frame-time-sensitive approach to testing, but it's clearly a better way to quantify the benefits of this sort of work.

Fortunately, AMD and Firaxis have built tools into Beyond Earth to capture frame times. I have been working on other things behind the scenes this week and haven't yet had the time to make use of these tools, but I'm pleased to see them there. You can bet they'll figure prominently into our future GPU articles and reviews.

88 comments — Last by BIF at 12:47 AM on 11/08/14

AMD's CEO transition is a natural next step
— 7:50 PM on October 8, 2014

I just finished listening in to the conference call for financial analysts regarding AMD's CEO transition from Rory Read to Dr. Lisa Su. As usual in cases like this one, the words spoken by Read and Su were carefully chosen and partially scripted ahead of time. As a result, they didn't offer a completely satisfying answer to the questions on everyone's minds about why Read is leaving just a few short years after he took the helm at AMD. Carefully crafted statements from large companies in a time of change rarely satisfy everyone's natural curiosity. One always wonders if there is a larger story behind the official narrative.

Perhaps we'll find out about a profound internal disagreement or dissatisfaction from the board that led to Read's ouster, as happened with Dirk Meyer in 2011.

In this case, though, I think it's entirely possible the reasons behind this change are fairly straightforward. Read said in his opening statement that one of his mandates upon joining AMD was to pick a successor, and he later stated that he hired Dr. Su with that possibility in mind. Read also pointed out that, on his watch, AMD cut operational expenditures by 30%. One doesn't slash a third of the jobs (or something close to it) at a company of AMD's size without alienating quite a few people.

Perhaps Read very intentionally planned to make sweeping changes, to reconstitute AMD's leadership team and structure, and then to step away in a fairly short window.

That's essentially the picture Read painted during his talk, although he's not one to speak in direct, clear language about much of anything. He'd ask you to "reevaluate the binary condition of the wall-mounted switching mechanism" rather than to "turn off the light."

When questioned about the timing of this move, Read briefly spoke in straightforward terms. He said, "The part I'm good at, I've already done," and "Lisa is uniquely positioned for the next phase."

For her part, Dr. Su echoed Read's sentiments about the transition being part of an intentional plan. She also outlined her priorities for AMD going forward, and there wasn't much daylight between those priorities and AMD's strategy under Read. Even the likely changes she outlined—such as an increased emphasis on co-development of products with customers like AMD did with Microsoft and Sony for their game consoles—echo the strategy Read and this team revealed in early 2012. Dr. Su also emphasized that AMD's investments in new x86 and ARM cores, new graphics IP, and SoC integration are "absolutely critical" to the company's future.

Furthermore, under direct questioning, Read and Su both denied this transition was prompted by a disagreement over AMD's long-term strategy. Dr. Su said she and Rory had "really no disagreements on anything" and have been "very aligned."

If the official portrait of this transition is largely accurate, it would be unusual in the context of AMD's last two CEO transitions.

In this case, my natural skepticism is dampened by a nugget I picked up at CES back in January. It wasn't anything I could report, but a well-placed industry source suggested to me that Dr. Su would very likely replace Read as AMD's CEO "within the next six months." Of course, since this is AMD,  the schedule was optimistic, but that prediction proved accurate—and it lends credibility to the notion that this move was in the works for a while.

By practically all accounts, Dr. Su is well-suited by virtue of her experience and ability to lead AMD. If she does well, it seems likely that Rory Read's tenure will be remembered as a time when a corporate turnaround artist installed new leadership and steered the company in a positive new direction.

That turnaround is still very much in progress, though, and the most difficult stages may yet lie ahead. The K12 (ARM) and Zen (x86) cores are still in development and likely will be for another year or more. AMD will struggle to remain relevant in the CPU market until its new cores arrive. Meanwhile, AMD's graphics division has a daunting challenge to face in the form of Nvidia's ultra-efficient Maxwell-based GPUs.

Dr. Su inherits a company with a clear direction and a potentially bright future, but the next 18 to 24 months could be really rough sailing. Here's hoping she—and the rest of AMD—is up to the challenge.

75 comments — Last by sschaem at 5:41 PM on 10/14/14

Here's another reason the GeForce GTX 970 is slower than the GTX 980
— 3:09 PM on October 1, 2014

I was really under the gun when I was trying to finish up my GeForce GTX 970 and 980 review. As a result, I wasn't able to track down the cause of an interesting anomaly in my test results. Have a look at the theoretical peak pixel fill rate of the GTX 970 and 980 reference cards (along with the Asus Strix 970 card we tested) based on the GPU's active ROP count and clock speed:

  Peak pixel
fill rate
(Gpixels/s)
Peak
bilinear
filtering
int8/fp16
(Gtexels/s)
Peak
shader
arithmetic
rate
(tflops)
Peak
rasterization
rate
(Gtris/s)
Memory
bandwidth
(GB/s)
GeForce GTX 970 75 123/123 3.9 4.7 224
Asus Strix GTX 970 80 130/130 4.2 5.0 224
GeForce GTX 980 78 156/156 5.0 4.9 224

On paper, the GTX 970 ought to be nearly as fast on this front as the 980—and the Asus Strix card ought to be a smidgen faster. The 3DMark color fill test we use has evidently been limited by memory bandwidth at times in the past, but that shouldn't be an issue since all three cards in question have the exact same memory config.

Look at what happened, however, when I ran that synthetic fill rate test:

Despite having superior or equal numbers on paper, the Asus Strix 970 couldn't come close to matching the GTX 980's delivered pixel throughput. I promptly raised an eyebrow upon seeing these results, but I didn't have time to investigate the issue any further.

Then, last week, an email hit my inbox from Damien Triolet at Hardware.fr, one of the best GPU reviewers in the business. He offered a clear and concise explanation for these results—and in the process, he politely pointed out why our numbers for GPU fill rates have essentially been wrong for a while. Damien graciously agreed to let me publish his explanation:

For a while, I've thought I should drop you an email about some pixel fillrate numbers you use in the peak rates tables for GPUs. Actually, most people got those numbers wrong as Nvidia is not crystal clear about those kind of details unless you ask very specifically.

The pixel fillrate can be linked to the number of ROPs for some GPUs, but it’s been limited elsewhere for years for many Nvidia GPUs. Basically there are 3 levels that might have a say at what the peak fillrate is :

  • The number of rasterizers
  • The number of SMs
  • The number of ROPs

On both Kepler and Maxwell each SM appears to use a 128-bit datapath to transfer pixels color data to the ROPs. Those appears to be converted from FP32 to the actual pixel format before being transferred to the ROPs. With classic INT8 rendering (32-bit per pixel) it means each SM has a throughput of 4 pixels/clock. With HDR FP16 (64-bit per pixel), each SM has a throughput of 2 pixels/clock.

On Kepler each rasterizer can output up to 8 pixels/clock. With Maxwell, the rate goes up to 16 pixels/clock (at least with the currently released Maxwell GPUs).

So the actual pixels/cycle peak rate when you look at all the limits (rasterizers/SMs/ROPs) would be :

GTX 750 : 16/16/16
GTX 750 Ti  : 16/20/16
GTX 760 : 32/24/32 or 24/24/32 (as there are 2 die configuration options)
GTX 770 : 32/32/32
GTX 780 : 40/48/48 or 32/48/48 (as there are 2 die configuration options)
GTX 780 Ti : 40/60/48
GTX 970 : 64/52/64
GTX 980 : 64/64/64

Extra ROPs are still useful to get better efficiency with MSAA and so. But they don’t participate in the peak pixel fillrate.

That’s in part what explains the significant fillrate delta between the GTX 980 and the GTX 970 (as you measured it in 3DMark Vantage). There is another reason which seem to be that unevenly configured GPCs are less efficient with huge triangles splitting (as it’s usually the case with fillrate tests).

So the GTX 970's peak potential pixel fill rate isn't as high as the GTX 980's, in spite of the fact that they share the same ROP count, because the key limitation resides elsewhere. When Nvidia hobbles the GTX 970 by disabling SMs, the effective pixel fill rate suffers.

That means, among other things, that I need to build a much more complicated spreadsheet for figuring these things out. It also means paying extra for a GTX 980 could be the smart move if you plan to use that graphics card to drive a 4K display—or to use DSR at a 4X factor like we recently explored. That said, the GTX 970 is still exceptionally capable, especially given the clock speed leeway the GM204 GPU appears to offer.

Thanks to Damien for enlightening us—and for solving a puzzle in our results that I hadn't yet had time to investigate.

41 comments — Last by ronch at 10:18 AM on 10/06/14

TR subscribers get Macrium Reflect for 20-40% off
— 9:22 AM on June 11, 2014

We haven't said much about TR subscriptions for a little while, after the rush of the launch, but this little experiment is so far off to an excellent start. You all proved that reader-supported content can work, and you saved our bacon after weak sales in early 2014. We learned some lessons from the initial introductory period, and now we're making additions and changes to the subscription service in response.

One thing that we've wanted to do is add more value for subscribers, so that more of you who are regular readers will find it worth your time to sign up. To that end, we're very happy to announce our first external benefit for TR subscribers: some handsome discounts on software purchased from the Macrium website, including the outstanding Macrium Reflect backup and imaging solution.

Anyone who subscribes for any amount of money at all, down to $1 payment in our pay-what-you-want system, will get a code good for 20% off at Macrium.com. Those folks who beat the average and get a Gold subscription will receive a code for a whopping 40% off, instead.

If you're a TR Silver or Gold subscriber now, your discount code is already waiting for you. Just go to the user control panel and look for it under the "Features" tab. The code should be redeemable throughout the next year.

I'm very pleased to be able to offer a subscriber discount on a product as good as Reflect. I make use of Reflect in Damage Labs constantly thanks to your recommendations. The program writes a bootable WinPE utility onto a thumb drive, and I use it for imaging all of my test systems. I also back up my own PC with Reflect, and it has saved me from an SSD failure with a flawless restore of a weekly image backup. Not only that, but I've received free updates from Macrium for more than a year now without once being held hostage to a required, paid upgrade due to an "incompatibility" with an upgraded version of Windows—unlike *ahem* some imaging companies.

We have more subscriber benefits in the works along these lines, so do yourself a favor and sign up now. You'll also get all of the other subscriber perks, including single-page article views, print templates, comment reply notifications, a subscriber badge, and access to the Smoky Back Room. Beat the average to get triple upvote/downvotes and access to our four-megapixel image galleries, as well.

Finally, remember, if you like what we're doing, you can always add to your subscription amount to support the cause. Thanks!

46 comments — Last by steelcity_ballin at 11:44 AM on 06/15/14

More light bulbs? Yep, more light bulbs
— 10:29 PM on May 13, 2014

The Internet is a strange and wonderful place. A couple of months ago, I posted a Friday night topic on light bulbs that incited a fair amount of discussion. Not long after that, I kid you not, I started receiving press releases and phone calls from the world's light-bulb brands, as if it made perfect sense for a website with the tagline "PC hardware explored" to be writing about LEDs versus CFLs.

This is a dangerous development.

As you may have gathered from my FNT post, I'm more than happy to geek out about lighting technologies. Quite a few of you are, too, apparently. Heck, I can even tie in my off-hours semi-obsession with my day job.

Watch and learn, kids.

After all, 2014 is already shaping up as the Year of the Display in PC hardware, with technologies like 4K and adaptive refresh rates hitting the market for the first time. There's huge overlap between lighting tech and displays. Backlight quality helps determine the temperature and color gamut of an LCD monitor. Beyond that, we're gonna need some serious candlepower (and efficiency) to make high-dynamic-range displays a reality. And one of the most promising display technologies, OLED, may also be the most promising lighting technology on the horizon. The fates of lighting technology and visual computing are deeply intertwined.

Hence, I've spent a silly amount of my free time lately screwing in various sorts of light bulbs for comparison, and here I am in the middle of a work day writing a blog post about it. It's educational, career-development type stuff.

I'm not sure any sane boss would buy that line, which is why it's great to be your own boss.

Anyhow, I've made a few new discoveries in my light bulb vision quest since last time out. Let me bring you up to date.

The Cree TW Series odyssey
First, I think it was one of you people, out there on the Internet, who posted in my Friday night topic and first made me aware of Cree's TW Series bulbs, a follow-up to the excellent LED lights selling across the U.S. at The Home Depot. Whoever you are, you cost me a fair chunk of change on light bulbs.

I was already a big fan of the Crees, which are superb in fixtures and other sorts of indirect lighting, but the stock Cree 60W replacements aren't quite up to replacing incandescents in every case. Above our kitchen table, for instance, in a triple-socket fixture with exposed bulbs, the regular Cree LEDs produce bright but somewhat harsh light. Under that light, the wood in our table and chairs looks kind of yellowy-green, more so than it does in daylight or with incandescents.

Cree cooked up the TW (or True White) Series in an attempt to rectify that shortcoming. The TW Series bulbs are rated for a Color Rendering Index of 93, substantially higher than the CRI rating of 80 for the regular Cree bulb. I'm not quite sure what all voodoo Cree put into the TW Series in order to achieve this improvement, but one component is a neodymium coating on the glass (similar to GE's Reveal bulbs) that filters out a portion of the light spectrum. I believe there may be a different mix of LED colors inside, as well.

There is a tradeoff involved: the TW Series 60W equivalent uses 13.5W to produce 800 lumens of illumination, while the regular Cree bulb requires only 9.5W to do the same. The TW Series bulb also has a somewhat larger base, so it may not fit into certain fixtures as easily as the stock Cree.

Anyhow, I ordered up some TW Series bulbs with a silly amount of anticipation, and I have to say: I was not disappointed.

Although the TW Series has the same 2700K color temperature rating as the regular Cree bulb, the light produced by the TW Series is much better balanced. When I installed the TWs in our kitchen fixture, the wood in our kitchen table regained its deep red and brown tones. No longer did it look sickly and yellow-green.

Under a lampshade, especially, the TW Series is virtually indistinguishable from an incandescent bulb. I look at it periodically and shake my head. Although there's surely more room for improvement, I think LED lighting technology has hit an important high-water mark here. I don't think most folks could tell the difference between this thing and a 60W incandescent in a casual, side-by-side "taste test."

The only downside of note is that the TW Series bulb doesn't appear to be quite as bright as the stock Cree 60W-equivalent, in spite of the matching lumen ratings. The TW Series illuminates as well as a 60W incandescent, but the stock Cree goes above and beyond that. Depending on the situation, you may find that you prefer the brighter but somewhat less balanced light from the regular bulb. For example, I wound up mixing two TW bulbs with one regular one in our kitchen fixture in order to get the right mix of brightness and quality.

I ordered my TW Series bulbs online, since they weren't available in stores locally, but that's since changed, as I learned from, ahem, an official Cree press release mailing. The TW Series is now available at The Home Depot stores across the U.S. The 60W-equivalent TW Series bulb goes for $15.97 a pop—four bucks more than the standard Cree offering. Since you're potentially looking at owning this thing for 10 years or more, I'd say the premium is worth paying.

My order of a six-pack of bulbs left me armed with a mix of regular and TW Series 60W equivalents. I thought I'd maybe use them to replace some of the remaining incandescents in my house, in places where CFLs just wouldn't cut it. Here's what happened instead: I found myself wandering through the house, swapping out a bunch of the CFLs for LEDs. Turns out, at the end of the day, my affinity for light quality trumps any pretensions of being green. For me, the advent of high-quality LED lighting means the death of CFLs, and I couldn't be happier about it.

Rosewill gets into the LED game
We've reviewed several of Rosewill's keyboards, so when I mentioned light bulbs in that Friday night topic, a keen-eyed PR person from Rosewill insisted on sending me some of their new LED bulbs. You can "see if you like ours better than Cree's!" she suggested perkily via email.

Upon reading that statement, I actually sat back in my chair, inhaled, and said to myself, "That is a bold statement."

But hey, the folks at Rosewill have done a nice job with their mechanical keyboards, so who knows?

These LED bulbs are apparently brand-new products that have just become available at Newegg. Rosewill sent me two different models of LED lights to try out, the warm-white 6.5W bulb rated for 560 lumens and the warm-white 8.2W bulb rated for 660 lumens. The firm doesn't provide an incandescent wattage equivalent for these things. Both of them fall somewhere in between the usual output of 40W and 60W incandescents.

My first impression of the Rosewill LEDs was quite positive. As you can see in the picture above, these bulbs have a compact ceramic base that's less bulky than the Cree's, and they're somewhat shorter in terms of total height, too—very much the size and shape of a traditional incandescent light bulb.

Rosewill rates its soft-white products at a color temperature of 3000K, slightly cooler than the 2700K rating for most soft-white bulbs. In theory, at least, I like the idea of a slightly cooler everyday bulb. So many of the 2700K CFLs I've been using for years at 2700K are too yellowy and seem "off." (There's also a 5000K "cool white" version of each bulb, but I told them not to bother sending those. Ugh. I don't need a grow lamp.)

After screwing the Rosewill 8.2W LED into a lamp and firing it up, I decided maybe 3000K wasn't a great idea. Perhaps this is emitted spectrum instead of just color temperature, but my first thought was that the Rosewill soft-white bulbs emit light that's just a little too Walmart-esque for my tastes. Too much blue to the hue, in my view.

Sorry about that.

I will say Rosewill has one-upped Cree on another front, though. The light produced by this bulb is distributed evenly in a broad, nearly spherical area limited only by the presence of that ceramic base. There aren't any obvious hotspots or dark areas. The Cree's LED tower is more compact and more closely resembles an incandescent filament, but it doesn't emit as much light straight up.

I was torn on whether the Rosewill lights really produced better illumination quality than a CFL when I first tested them in several shaded lamps. The bluish light seemed pretty similar overall. Any doubts on that front were squelched when I subbed in the Rosewill 8.2W bulbs for 13W CFLs in a couple of those three-light open fixtures. The Rosewills performed surprisingly well in direct lighting situations, producing brighter and subjectively higher-quality light than the CFLs they replaced. I also found that the 6.5W bulbs were a nice upgrade in lumen output from a 40W incandescent.

Still, the light quality doesn't really come close to Cree's regular offerings, let alone the TW Series.

The biggest drawback to the Rosewill LEDs, though, is probably the delay on start-up. Like most LEDs, these bulbs reach peak brightness pretty much as soon as they ignite. Trouble is, there's a pretty pronounced delay of a half-second or so (it seems to vary) between flipping the switch and ignition. Seriously, that is a long time. Even CFLs, which take several minutes to reach peak brightness, start producing some light almost instantly. The Crees LEDs are nearly instant-on, too. You can decide how annoying you find this quirk, but personally, I want a faster response when I flip the light switch.

Add in the fact that the Rosewill LEDs aren't compatible with dimmers and only come with a two-year warranty (versus Cree's decade-long pledge,) and it's clear this isn't quite the same caliber of product. That means the Rosewill bulb needs to be cheaper than the Cree, and right now, the 8.2W version is selling for $12.45 at Newegg. This thing needs to cost less, not more, than the market leader.

I suspect Rosewill knows that, and I suspect they'll run discounts and promotions that effectively drop the price of these bulbs over time. At a bit of a discount, these Rosewill bulbs could be a nice value, particularly for use in fixtures where their compact bases, conventional height, and well-distributed illumination would be appreciated.

A new contender emerges
LEDs are getting to be mighty good, but they're not the only lighting technology vying for a spot in sockets after the incandescent ban. The folks at a new start-up company have refined and miniaturized a form of induction lighting in order to create the Finally Bulb, whose story was told at length in this New York Times write-up.

Induction lighting has been used in commercial settings for ages, apparently, but was too large to be practical elsewhere. Finally calls its version of induction tech "Acandescent" lighting, which isn't bad as marketing names go.

The Finally Bulb is set for release this summer, and it looks to be almost exactly the same size as a 60W incandescent. The rest of the specs look pretty decent, too. It requires 14.5W and produces 800 lumens, and the company claims the bulb turns on instantly, with a rated life of 15,000 hours and a warranty spanning 10 years.

Two things could possibly set this bulb apart. One is light quality. The 2700K bulb has a CRI rating of 83, which is higher than the standard Cree LED's rating. The Finally marketing materials focus quite a bit on light quality, claiming this is "the first bulb to truly replicate the look, reassuring warmth and omnidirectional light of the incandescent bulbs you love."

That's a strong claim for a bulb with an 83 CRI. Still, CRI is an imperfect measure, so I'm eager to have a look at one of these things in operation as soon as possible.

The other big deal with the Finally Bulb is its projected price of about $8. That's cheap. If this bulb produces truly appealing light, meets its specs, and undercuts quality LEDs by a few bucks per bucks per socket, it might become yet another a viable alternative option.

99 comments — Last by slate0 at 6:46 PM on 06/11/14

TR subscriptions: our progress so far
— 1:53 PM on March 16, 2014

Several days ago, we introduced our pay-what-you-want subscription system. We asked for you all to support us, and we offered a handful of extra perks on the site in return. So far, your response has been overwhelmingly positive and gratifying.

In a short span, we've already received enough subscription funds to improve our bottom line by $1,100 per month for the next year. Even more remarkably, the current average payment stands at over $50 per user.

I don't think any of us here on staff would have predicted an average that high. This is, after all, a pay-what-you-want system where the majority of the benefits are available for as little as one dollar.

So, to everyone who has signed up to support us, thank you very much, from all of us. We appreciate the support and the kind words that have come with it. We built a system that essentially relies on your goodwill, and you have confirmed our faith in you by responding with uncommon generosity.

Of course, the amount we've taken in so far isn't nearly enough to sustain us outside of our usual advertising sales—but this has been an incredibly encouraging start. Not only are we better funded during a difficult time, but we've also demonstrated that a creative crowd-funding system can be an effective supplement to ad sales. Simply knowing that fact makes us stronger, better able to pursue our work with independence and confidence. That's one of the reasons that we took this route. TR has always been about serving a community of readers.

Subscriber features infographic. Click to embiggen.At the risk of lowering the average, I should probably mention something. I've noticed a certain reluctance among folks to make a smaller contribution in order to get a Silver subscription. There's a bit of a "Gold or nothing" mentality, seems like. Let me do my best to discourage that kind of thinking. There is no shame to paying well below the average in order to pick up a Silver subscription. Every bit of support we get helps. Heck, we built most of the good perks into the Silver tier and set the price to "whatever you want" in order to encourage broad participation.

For the perplexed, Cyril made a swanky infographic that maps out the various features of the two tiers in a nice visual format. I have to say, I'm really digging the e-mail notifications when folks reply to my comments.

If you can't afford to beat the current ~$50 average for an annual subscription, one of the best things you can do to support TR is choose one of the pre-set payment amounts and allow your subscription to auto-renew next year. Having that consistent support over time is what will allow us to plan, build, and grow—even if it's a small amount per person each year.

I should also point out something else about how the payment system works. The amount you give is cumulative for your subscription term. If you start with a $25 payment to get Silver, wait a month, and then pay another $26 after your next paycheck, your total amount contributed will be $51. At that point, assuming the average is still $50, you'll have beaten the average, so you'd be automatically upgraded to Gold for the remaining 11 months. I hope that's clear enough. There's more info about how this whole thing works in the FAQ. Also, the slick little predictor Bruno cooked up for the payment page will tell you exactly what you need to pay to get Gold or earn a spot in the top-10 list.

Speaking of the top-10 list, here's how it stands right now. These are some incredibly generous folks. Remember, the top 10 contributors as of noon Central time on March 21, 2014 will get to choose from one of these three things:

  • Dinner with a TR editor. If you can make it to our location, you can can dine with either me (in Kansas City or perhaps San Francisco/Silicon Valley, since I visit there fairly often), Geoff and Cyril (in Vancouver) or Jordan (in New York City). We'll pick up the check.
  • An appearance on the TR podcast where you can talk tech with the panel for a segment.
  • An executive producer credit for one episode of the podcast.

If you'd like to bump one of these guys off the list and grab a spot, you can add to your subscription total at any time. The predictor will tell you exactly what it'll take to get there.

134 comments — Last by Branford at 11:57 AM on 03/27/14

Introducing TR subscriptions
— 11:52 AM on March 12, 2014

We've been independently publishing The Tech Report for nearly 15 years, and today, we've come to a crossroads. You see, TR has been supported primarily by advertising sales since its beginning, but that business has been difficult for a while, for a number of reasons.

Although PC gaming and enthusiast systems are a growing segment, the overall market for PCs has been in a prolonged slump. Advertising dollars have moved elsewhere. We have been attempting to hold steady and keep our current, long-tenured staff intact for the past few years, but the reality is that we've been slowly bleeding money.

That reality is a strange one for us to face, since your interest hasn't waned as the ad market has weakened. TR as a publication is more vibrant than ever. We know from our daily experience that you all, our readers, crave the sort of in-depth reviews, articles, and podcasts we produce. Our web traffic is strong. We've had huge appreciation for things like our Inside the Second gaming benchmarks and our SSD endurance experiment. And the TR Podcast has become so popular, we had to find a higher-bandwidth hosting arrangement.

Our challenge, then, has been finding a way to enable the community to support us. Heck, we want to depend on you. We've always tried to run the site with our readers' best interests in mind, and we've given up countless business opportunities as a result. Might as well make our relationship official.

We've been pondering adding a subscription option to the site literally for years, but we couldn't find a satisfactory way to make it work. Lots of independent web publications face a similar struggle to fund the production of high-quality journalism. We searched far and wide to see how others were handling it. Sadly, virtually all of the existing crowd-funding approaches have obvious drawbacks. Too often, they involve gating off public access to core content, hours of tedious rewards fulfillment work that distracts from content creation, or setting an arbitrary subscription price that doesn't work for everyone.

We didn't think any of the existing models were right for TR and its community, so we did what we've done in the past in tough situations: we innovated. We conceived of a better model, and we quietly spent the last of our cash reserves building it. What we've come up with is somewhat unique, and we think it's the best attempt of its type so far.

We've created a "subscriptions" system, but we're not gating off our articles from the public. Virtually everything we publish will remain freely available to all. Instead, we've built a number of new features into the site, many of them often requested. If you subscribe, then you'll get access to them.

Best of all, you can name your own price for a subscription, so folks are free to support TR as much or as little as they think is appropriate. If you like what we're doing and want to support us further, you can add to your contribution total at any time.

If you contribute any amount, you'll get access to a full year of our Silver subscriber features:

  • A membership tag next to your username in the comments and on the TR Forums.
  • Optional e-mail notifications when other users reply to your comments.
  • Access to single-page versions of our multi-page articles.
  • The ability to print multi-page articles with a nice, clean template in a single click.
  • Access to the Smoky Back Room, our contributors-only forum.

Those who contribute enough to beat the current average payment will get a Gold subscription, which gets them:

  • All the perks of a Silver subscription: a membership tag, e-mail notifications, single-page and printable views, and Smoky Back Room access.
  • The power to upvote or downvote posts in the comments section as many as three times.
  • Going forward, we've raised the resolution limit in our image galleries to four megapixels, but only Gold subscribers get access.

Additionally, the usernames of our very best supporters will be shown on our list of the top 10 contributors, visible in various places across the site.

1. FrodoB $424
2. Anonymous Gerbil $286
3. Damage $150
4. SamwiseG $116
5. Merry $96
6. Saruman $75
7. Mr. Took $50
8. Anonymous Gerbil $50
9. tbombadil $37
10. tbeard $36

Of course, the biggest benefit of subscribing is TR's continued health and ability to publish the sort of high-quality content we always have. In fact, if this crazy scheme works out well, we'll put any extra funds we receive back into producing articles for the site and building additional features for subscribers. We have a whole bucket-load of cool ideas for subscriber perks that we'd love to implement.

Speaking of added perks, we've decided to kick off our subscriptions push with a little something extra. The top 10 subscribers as of noon Central time on March 21, 2014 will get to choose from one of these three items:

  • Dinner with a TR editor. If you can make it to our location, you can can dine with either me (in Kansas City or perhaps San Francisco/Silicon Valley, since I visit there fairly often), Geoff and Cyril (in Vancouver) or Jordan (in New York City). We'll pick up the check.
  • An appearance on the TR podcast where you can talk tech with the panel for a segment.
  • An executive producer credit for one episode of the podcast.

Don't worry if your initial contribution gets bumped out of the top 10 by a small amount. You can add more to your total at will.

I'm hoping I can treat somebody to some genuine Kansas City barbecue.

Right now, though, we need your help. You can go right here to sign up for an annual subscription. If you still have questions about how this whole deal works, you can check out our FAQ for more info. And I'll be answering questions not covered by the FAQ in the comments below. Thanks in advance for your support.

558 comments — Last by Meadows at 5:17 PM on 04/05/14