Single page Print

Power consumption
We took our power readings at the wall outlet using an Extech 380803 power meter. Only the PC was plugged into the watt meter; the system's monitor and speakers, for instance, were not. The "idle" readings were taken at the Windows desktop, while the "load" readings were taken using SMPOV and the 64-bit version of the POV-Ray renderer to load up the CPUs. In all cases, we asked SMPOV to use the same number of threads as there were CPU front ends in Task Manager—so four for the Extreme Edition 965, two for the Core 2 and Athlon 64 X2 processors. The test rigs were all equipped with OCZ GameXStream 700W power supply units.

The graph below for idle power use has results with and without "power management." By "power management," we mean the dynamic clock speed and voltage throttling technologies from Intel and AMD, known as SpeedStep and Cool'n'Quiet, respectively. The Intel processors also have an enhanced halt state known as C1E. A processor's halt state is invoked by the OS whenever the system is able to sit idle for a moment. The C1E halt state in the Intel processors ramps down the CPU clock speed and voltage in order to save power, so even without SpeedStep, the CPU's idle power use is reduced. Keep that in mind when considering the "No power management" results for the Intel processors at idle.

Interestingly, we found that the Core 2's C1E state doesn't lower CPU voltage. The CPU multiplier drops to 6.0, bringing the clock speed down to 1.6GHz, but voltage appears to remain unchanged. Turning on SpeedStep, however, drops the CPU's core voltage, allowing for even lower idle power use.

Another tricky part about power consumption testing is getting good numbers for our "simulated" CPU speed grades. In order to make it work, you have to set the proper CPU core voltage, not just the right clock speeds. I made an attempt at simulating the Athlon 64 X2 models 4800+, 4600+, and 4200+ and the Pentium D 950/960 by setting the CPU voltages manually, but I've put an asterisk next to those CPUs in our results as a reminder that they're simulated. I didn't even bother including some simulated CPU models because of the difficulty involved and a few questionable results.

For the Athlon 64 X2 4800+, I set the voltage at 1.35V. The X2 4600+ and 4200+ were set to 1.3V. The "power management" idle scores were simply taken from chips with the same cache size (the FX-62 and 5000+, respectively), because all of these processors share the same 1 GHz/1.1V idle with Cool'n'Quiet.

The Pentium D 950 and 960 were trickier, since each Pentium D's voltage needs are programmed at the factory. In this case, I stuck with the default of 1.312V for both speed grades. On an 800MHz bus, the Pentium D 950 and 950 both clocked down to 2.4 GHz at idle via the C1E halt mechanism. The Extreme Edition 965 clocked down to 3.2 GHz at idle.

You'll notice that the results below include numbers for the Energy Efficient versions of the Athlon 64 X2 3800+ and 4600+. AMD sent these CPUs out to us along with a more power-efficient motherboard than our Asus M2N32-SLI Deluxe test platform, whose nForce 590 SLI chipset seems to be something of a power hog. The board AMD sent, however, is not an enthusiast-class mobo with dual graphics slots, so we elected not to include it in our tests. We wanted to test the EE chips opposite the Core 2 Duo on an enthusiast-class board, so we stuck with the M2N32-SLI Deluxe. It's possible that enthusiast-class boards based on the Radeon Xpress 3200 or the nForce 570 SLI chipsets could lower power consumption for all of the Athlon 64 processors here without compromising performance.

Whoa. Performance is way up with the Core 2 processors, and power draw is way down. The Core 2's mythical "performance per watt"—which is actually a rather slippery thing to quantify—has gotta be the best on the market. The Core 2 Duo E6700 outperforms the Athlon 64 FX-62 more often than not, yet the E6700-based system draws 74 fewer Watts under load.

AMD has made substantial progress on this front with its new Energy Efficient processors. Under load, the Athlon 64 X2 4600+ EE system pulls about 20W less at the wall socket than the stock X2 4600+ system, and the 35W-rated X2 3800+ system draws less power than anything else we tested. Still, even these new CPUs can't match the performance of the Core 2 processors that are in the same neighborhood in terms of power draw.