Single page Print

The combination of Intel's 45nm Harpertown Xeons and their supporting Stoakley platform brings incremental but compelling gains in performance over current Xeons on the Bensley platform. Clock for clock, the new Xeons delivered performance gains in the majority of our tests. Those gains were especially notable in SPECjbb2005, where we saw about a 10% increase, and in memory bandwidth-limited applications like MyriMatch and Euler3D's CFD solver, where the advances were even greater.

This higher clock-per-clock performance comes alongside a considerable drop in peak power use at 3GHz—from 403W for the Xeon X5365 system to 311W for the Xeon E5472 system—and a smaller but welcome drop in power draw at idle. The faster performance and lower power consumption together make the Stoakley/Harpertown combo an excellent "performance per watt" proposition, as our measure of energy required to render a scene demonstrated. In fact, no other solution was close in this respect. The new Xeons' weakness on the efficiency front remains power draw at idle, a problem largely attributable to Intel's continued use of FB-DIMM memory. For this reason, AMD's quad-core Opterons remain competitive in terms of overall power efficiency.

Those new Opterons will certainly have their hands full with Intel's 45nm Xeons, though. The Xeon E5472 extends Intel's performance lead over the fastest quad-core Opteron we've seen yet, the 2.5GHz model 2360 SE. Of course, neither chip is available to the public as a product just yet, though both are promised for the fourth quarter of this year. Right now, if both companies make good on their plans, it looks like Intel will continue to lead in the server and workstation markets. The same may be true in other markets served by these same basic CPU designs, but only time will tell for sure.TR

The Tech Report System Guide: May 2017 editionRyzen 5 takes the stage 110
AMD's Ryzen 5 1600X and Ryzen 5 1500X CPUs reviewed, part oneGetting our game on 192
A moment of Zen with David Kanter: The TR Podcast 190Digging into the whys of Ryzen 39
Intel defends its process-technology leadership at 14nm and 10nmWhat's in a number? 111
AMD's Ryzen 7 1800X, Ryzen 7 1700X, and Ryzen 7 1700 CPUs reviewedRyzen up, back on the street 711
A Bridge too far: migrating from Sandy to Kaby LakeA Core i7-7700K and Asus Z270-A upgrade story 161
Intel's Core i7-7700K 'Kaby Lake' CPU reviewedHeavy lies the crown 175
AMD crests Summit Ridge with Ryzen CPUsRyzen shine 367