Single page Print

STARS Euler3d computational fluid dynamics
Few folks run fluid dynamics simulations on their desktops, but we've found this multi-threaded test to be particularly demanding of memory subsystems, making it a good link between our memory and application performance tests. We ran this test with eight threads and five iterations.

The Core i7-965 Extreme's performance scales up nicely with faster memory. The looser timings of our 1600MHz memory config appear to exact a performance penalty here, but it's at best a small one.

Like its faster sibling, the 920 also makes good use of faster memory, although it doesn't do so quite as effectively. For example, the 920 is only a little bit faster with 1600MHz memory than it is with DDR3-1333. Both of those configs are quicker than the 920 paired with 1066MHz memory, though. There, the 920 does better with lower access latencies and a full triple-channel config. Again, though, it's worth noting that the performance of our dual-channel configuration isn't as low as one might expect, given that we've essentially reduced theoretical memory bandwidth (and total system memory) by one third.

MyriMatch proteomics
This MyriMatch benchmark simulates protein analysis with multiple threads, and according to its developers, performance is at least partially bound by memory bandwidth. Perfect. We've stuck with an eight-thread run for this test.

Processor speed matters more here than in Euler3D, but we still see consistent gains from faster memory configurations. The 965 Extreme, for example, shaves off two seconds with each step up the memory speed ladder. Those gains aren't quite as pronounced for the Core i7-920, which sees a jump in performance with our overclocked DDR3-1333 config, but not much of an improvement when we bump the system up to DDR3-1600.

That said, the 920 is more than three seconds faster with 1066MHz memory running at tighter 7-7-7-20 timings than it is with 9-9-9-27 latencies. And it's one second faster with three memory channels than it is with only two—an admittedly small margin, all things considered.

Cinebench 10
We've tapped two Cinebench tests here. The first is a rendering test that should be largely CPU-bound, but the second is an OpenGL modeling test that might benefit from a faster memory subsystem.

There isn't much to see in the rendering tests, where our various configurations line up according to processor speed.

The results of the modeling test are more mixed, with the 965 Extreme scoring higher with faster memory. Scores for the 920 don't universally favor quicker memory, though. While our low-latency DDR3-1066 config beats looser timings and our dual-channel setup, the Core i7-920 is actually slower with an overclocked base clock and both 1333 and 1600MHz memory. It is worth noting, though, that the performance gaps we're seeing here are much smaller than those we observed in MyriMatch and Euler3d.