Single page Print

Our testing methods
Our test rig's hardware may look antiquated by today's standards, but its Intel ICH7R storage controller isn't all that different from what you get in the latest ICH10R today. Both conform to the second-generation "SATA II" 3Gbps Serial ATA specification, offering support for Native Command Queuing and 300MB/s host-to-disk transfer rates. The next-gen 6Gbps Serial ATA specification wasn't completed until this year, and it's not expected to make it to motherboards until the fall.

Even with only a Pentium 4 Extreme Edition onboard, this test system still has plenty of horsepower for the storage-intensive tests we use to probe hard drives for weakness. However, we should note that because Windows XP was optimized for mechanical storage, it's not an ideal OS for some of the solid-state drives. Our goal here isn't to look at the fine details of each drive's performance, but to observe overall trends that should be unaffected by oddball outliers. Besides, we've already addressed SSD performance in Windows Vista.

Oh, and rather than testing SSDs in factory-fresh form, we first put them into a simulated used state devoid of empty flash pages. We think this better represents long-term SSD performance.

Speaking of oddballs, a few of the configs we've tested over the years are far removed from what we'd consider practical solutions for even high-end desktop use. Neither of the DRAM-based solid-state drives we've used—Gigabyte's i-RAM and ACard's ANS-9010—offer enough storage capacity for even just an OS and applications drive. Our four-way Intel X25-E Extreme RAID 0 array, running on an Adaptec RAID 5405 card rather than the ICH7R, also costs about as much as small car—a Tata Nano, but still. These outlandish configs may not be reasonable for desktop use, but they do give us an idea of what the exotic reaches of the storage spectrum have to offer.

Getting all this test data consolidated and graphed in a single Excel spreadsheet proved to be a major undertaking. And that was before I tried distill the data down to a reasonable number of readable graphs. With 70 results for nearly every test, readability goes out the window pretty quickly. In an attempt to make things easier to interpret, we've segmented drives into 3.5", 2.5", 10k-RPM, and SSD categories and color-coded the results accordingly.

Before we get started, I should also note that you won't find boot time, noise level, or power consumption results in this retrospective. Over the last few years, we've switched up our test methods for each slightly, so we can't compare all our results directly. You'll find that a couple of drive configurations are missing from the iPEAK results, as well. We didn't introduce iPEAK to the test suite until August of 2005. Oh, and the i-RAM doesn't appear in our game level load tests or in WorldBench because its 4GB capacity wasn't big enough to accommodate the necessary files.

One last time, here are the finer details of our test system.

Processor Pentium 4 Extreme Edition 3.4GHz
System bus 800MHz (200MHz quad-pumped)
Motherboard Asus P5WD2 Premium
Bios revision 0422
North bridge Intel 955X MCH
South bridge Intel ICH7R
Chipset drivers Chipset 7.2.1.1003
AHCI/RAID 5.1.0.1022
Memory size 1GB (2 DIMMs)
Memory type Micron DDR2 SDRAM at 533MHz
CAS latency (CL) 3
RAS to CAS delay (tRCD) 3
RAS precharge (tRP) 3
Cycle time (tRAS) 8
Audio codec ALC882D
Graphics Radeon X700 Pro 256MB with CATALYST 5.7 drivers
Hard drives ACard ANS-9010
ACard ANS-9010 RAID 0
Corsair P256
Fujitsu MHV2040AT
Gigabyte i-RAM
Hitachi Deskstar 7K1000
Hitachi Deskstar 7K500
Hitachi Deskstar E7K1000
Hitachi Deskstar T7K250
Hitachi Travelstar 5K100
Hitachi Travelstar 5K500.B
Hitachi Travelstar 7K100
Intel X25-E Extreme
4 x Intel X25-E in RAID 0
Intel X25-M
Maxtor DiamondMax 10
Maxtor DiamondMax 11
OCZ Apex
OCZ SATA II
OCZ Vertex
Samsung FlashSSD
Samsung PB22-J
Samsung Spinpoint F1
Samsung Spinpoint M7
Samsung Spinpoint T
Seagate Barracuda 7200.10
Seagate Barracuda 7200.11
Seagate Barracuda 7200.11 1.5TB
Seagate Barracuda 7200.12
Seagate Barracuda 7200.7 NCQ
Seagate Barracuda 7200.8
Seagate Barracuda 7200.9 160GB
Seagate Barracuda 7200.9 500GB
Seagate Barracuda ES
Seagate Barracuda ES.2
Seagate Momentus 5400.2
Seagate Momentus 5400.3
Seagate Momentus 5400.4
Seagate Momentus 5400.6
Seagate Momentus 7200.1 PATA
Seagate Momentus 7200.1 SATA
Seagate Momentus 7200.3
Seagate Momentus 7200.4
Super Talent IDE Flash
Super Talent MasterDrive MX
Super Talent SATA25
Super Talent UltraDrive ME
Transcend TS32GSSD25S-M
WD Caviar Black
WD Caviar GP
WD Caviar Green
WD Caviar Green 2TB
WD Caviar SE16 250GB
WD Caviar SE16 500GB
WD Caviar SE16 640GB
WD Caviar SE16 750GB
WD Caviar RE2 400GB
WD Caviar RE2 500GB
WD Raptor WD1500ADFD
WD Raptor WD360GD
WD Raptor WD740GD
WD Raptor X
WD RE2
WD RE2-GP
WD RE3
WD Scorpio Black
WD Scorpio Blue 320GB
WD Scorpio Blue 500GB
WD Scorpio WD1200VE
WD VelociRaptor VR150
OS Windows XP Professional
OS updates Service Pack 2

Thanks to NCIX for getting us the Deskstar 7K1000 and SpinPoint F1.

Our test system was powered by an OCZ PowerStream power supply unit.

We used the following versions of our test applications:

The test systems' Windows desktop was set at 1280x1024 in 32-bit color at an 85Hz screen refresh rate. Vertical refresh sync (vsync) was disabled for all tests.

All the tests and methods we employed are publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.