Single page Print

Our testing methods
Before dipping into pages of benchmark graphs, let's set the stage with a quick look at other the players we've assembled for comparative reference. We've called up a wide range of competitors, including a selection of desktop hard drives, traditional notebook drives, Seagate's Momentus XT hybrid, and a stack of pure solid-state goodness. Below is a chart highlighting some of the key attributes of the contenders we've lined up to face the Caviar Green 3TB.

Flash controller Interface speed Spindle speed Cache size Platter capacity Total capacity
Corsair Force F100 SandForce SF-1200 3Gbps NA NA NA 100GB
Corsair Force F120 SandForce SF-1200 3Gbps NA NA NA 120GB
Corsair Nova V128 Indilinx Barefoot ECO 3Gbps NA 64MB NA 128GB
Crucial RealSSD C300 Marvell 88SS9174 6Gbps NA 256MB NA 256GB
Hitachi Deskstar 7K1000.C NA 3Gbps 7,200 RPM 32MB 500GB 1TB
Intel X25-M G2 Intel PC29AS21BA0 3Gbps NA 32MB NA 160GB
Intel X25-V Intel PC29AS21BA0 3Gbps NA 32MB NA 40GB
Kingston SSDNow V+ Toshiba T6UG1XBG 3Gbps NA 128MB NA 128GB
OCZ Agility 2 SandForce SF-1200 3Gbps NA NA NA 100GB
OCZ Vertex 2 SandForce SF-1200 3Gbps NA NA NA 100GB
Plextor PX-128M1S Marvell 88SSE8014 3Gbps NA 128MB NA 128GB
Samsung Spinpoint F3 NA 3Gbps 7,200 RPM 32MB 500GB 1TB
Seagate Barracuda 7200.12 NA 3Gbps 7,200 RPM 32MB 500GB 1TB
Seagate Barracuda LP NA 3Gbps 5,900 RPM 32MB 500GB 2TB
Seagate Barracuda XT NA 6Gbps 7,200 RPM 64MB 500GB 2TB
Seagate Momentus 7200.4 NA 3Gbps 7,200 RPM 16MB 250GB 500GB
Seagate Momentus XT NA 3Gbps 7,200 RPM 32MB 250GB 500GB
WD Caviar Black 1TB NA 6Gbps 7,200 RPM 64MB 500GB 1TB
WD Caviar Black 2TB NA 3Gbps 7,200 RPM 64MB 500GB 2TB
WD Caviar Green 2TB NA 3Gbps 5,400 RPM 32MB 500GB 2TB
WD Caviar Green 3TB NA 3Gbps 5,400 RPM 64MB 750GB 3TB
WD Scorpio Black NA 3Gbps NA 16MB 160GB 320GB
WD Scorpio Blue NA 3Gbps 5,400 RPM 8MB 375GB 750GB
WD SiliconEdge Blue JMicron JMF612 3Gbps NA 64MB NA 256GB
WD VelociRaptor VR150M NA 3Gbps 10,000 RPM 16MB 150GB 300GB
WD VelociRaptor VR200M NA 3Gbps 10,000 RPM 32MB 200GB 600GB

Obviously, the SSD and mobile hard drive results won't be as relevant to our discussion of the new Caviar Green. You'll want to pay particular attention to how the Green compares to its 2TB predecessor and Seagate's low-power Barracuda LP. The LP tops out at 2TB, which is as big as you can get Seagate's internal hard drives at the moment.

On the SSD front, we've collected all the other relevant players, including drives based on Indilinx, Intel, JMicron, Marvell, SandForce, and Toshiba controllers. Although it might not seem like a fair fight, we've also thrown in results for a striped RAID 0 array built using a pair of Intel's X25-V SSDs. The X25-V only runs a little more than $100 online, making multi-drive RAID arrays affordable enough to be tempting for desktop users. Our X25-V array was configured using Intel's P55 storage controller, the default 128KB stripe size, and the company's latest 9.6.0.1014 Rapid Storage Technology drivers.

The block-rewrite penalty inherent to SSDs and the TRIM command designed to offset it both complicate our testing somewhat, so I should explain our SSD testing methods in greater detail. Before testing the drives, each was returned to a factory-fresh state with a secure erase, which empties all the flash pages on a drive. Next, we fired up HD Tune and ran full-disk read and write speed tests. The TRIM command requires that drives have a file system in place, but since HD Tune requires an unpartitioned drive, TRIM won't be a factor in those tests.

After HD Tune, we partitioned the drives and kicked off our usual IOMeter scripts, which are now aligned to 4KB sectors. When running on a partitioned drive, IOMeter first fills it with a single file, firmly putting SSDs into a used state in which all of their flash pages have been occupied. We deleted that file before moving onto our file copy tests, after which we restored an image to each drive for some application testing. Incidentally, creating and deleting IOMeter's full-disk file and the associated partition didn't affect HD Tune transfer rates or access times.

Our methods should ensure that each SSD is tested on an even, used-state playing field. However, differences in how eagerly an SSD elects to erase trimmed flash pages could affect performance in our tests and in the real world. Testing drives in a used state may put the TRIM-less Plextor SSD at a disadvantage, but I'm not inclined to indulge the drive just because it's using a dated controller chip.

To make our massive collection of results a little easier to interpret, we've colored our bar charts by drive type. This color coding separates the SSDs from 2.5" and 3.5" mechanical drives and marks low-RPM versions of the latter, allowing the Caviar Green to stand out from the crowd, at least visually.

Most of our tests run on drives connected as secondary storage, so we were able to use the Caviar Green's full 3TB with our test system's default configuration, which uses the Microsoft AHCI drivers built into Windows 7. For the few tests that required booting off the Green, we elected to stick with the same config, since moving to the HighPoint card would've made the results less comparable—we'd be switching storage controllers, as well. The impact of running the Green at slightly less than full capacity should be negligible considering that our boot and system partition only amounts to 100GB, most of which is unused.

With few exceptions, all tests were run at least three times, and we reported the median of the scores produced. We used the following system configuration for testing:

Processor Intel Core i5-750 2.66GHz
Motherboard Gigabyte GA-P55A-UD7
Bios revision F4
Chipset Intel P55 Express
Chipset drivers INF update 9.1.1.1015
Storage controller drivers Microsoft AHCI 6.1.7600.16385
Memory size 4GB (2 DIMMs)
Memory type OCZ Platinum DDR3-1333 at 1333MHz
Memory timings 7-7-7-20-1T
Audio Realtek ALC889A with 2.42 drivers
Graphics Gigabyte Radeon HD 4850 1GB with Catalyst 10.2 drivers
Hard drives Western Digital VelociRaptor VR200M 600GB
Western Digital Caviar Black 2TB
Western Digital VelociRaptor VR150M 300GB
Corsair Nova V128 128GB with 1.0 firmware
Intel X25-M G2 160GB with 02HD firmware
Intel X25-V 40GB with 02HD firmware
Kingston SSDNow V+ 128GB with AGYA0201 firmware
Plextor PX-128M1S 128GB with 1.0 firmware
Western Digital SiliconEdge Blue 256GB with 5.12 firmware
OCZ Agility 2 100GB with 1.0 firmware
OCZ Vertex 2 100GB with 1.0 firmware
Corsair Force F100 100GB with 0.2 firmware
Crucial RealSSD C300 256GB with 0002 firmware
Western Digital Scorpio Black 320GB
Western Digital Scorpio Blue 750GB
Seagate Momentus 7200.4 500GB
Seagate Momentus XT 500GB
Corsair Force F120 120GB with 30CA13F0 firmware
Hitachi Deskstar 7K1000.C 1TB
WD Caviar Black 1TB
Samsung Spinpoint F3 1TB
Seagate Barracuda 7200.12 1TB
Seagate Barracuda LP 2TB
Seagate Barracuda XT 2TB
WD Caviar Black 2TB
WD Caviar Green 2TB
WD Caviar Green 3TB
Power supply OCZ Z-Series 550W
OS Windows 7 Ultimate x64

You can read more about the hardware that makes up our twin storage test systems on this page of our VelociRaptor VR200M review. Thanks to Gigabyte for providing the twins' motherboards and graphics cards, OCZ for the memory and PSUs, Western Digital for the system drives, and Thermaltake for SpinQ heatsinks that keep the Core i5s cool.

We used the following versions of our test applications:

The test systems' Windows desktop was set at 1280x1024 in 32-bit color at a 75Hz screen refresh rate. Vertical refresh sync (vsync) was disabled for all tests.

Most of the tests and methods we employed are publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.