Single page Print

Synthetic GPU performance

We'll kick off our IGP performance tests with a quick look at some synthetic benchmarks. The test above is intended to measure texture filtering performance. For the reasons we discussed on the last page, the results tell an interesting story. At lower filtering quality levels, the A8's IGP has a big lead over the Intel IGP. As the filtering quality level rises, the performance of the two solutions converges—no doubt because the Radeon IGP is doing increasingly more sampling and blending work than the Intel HD 3000.

Notably, the discrete Radeon is measurably faster than either of the integrated solutions, thanks to higher GPU throughput rates and higher memory bandwidth.

These next two tests are meant to gauge GPU shader arithmetic. We used the defaults for ShaderToyMark, since it's all about stressing shader performance. We configured Unigine Heaven to use DirectX 10—common ground for these GPUs, since the Intel IGP can't handle DX11—and set the shader quality level to "high" while the texture and filtering settings were at "low." The screen resolution was set to 1366x768, native for both of the test systems.

In both of these shader-oriented tests, the A8's integrated Radeon HD 6620G is about a third faster than the Intel HD 3000. The discrete Radeon HD 6630 is again faster than either, and Unigine gives us our first glimpse of Dual Graphics in action. In this case, going dual offers a noteworthy increase in frame rates.