Single page Print

HD Tune — Transfer rates
HD Tune lets us present transfer rates in a couple of different ways. Using the benchmark's "full test" setting gives us a good look at performance across the entire drive rather than extrapolating based on a handful of sample points. The data created by the full test also gives us fodder for a line graph.

To make the line graph more readable, we've excluded everything but the high-capacity SSDs and the Caviar Black. All the mechanical and hybrid drives have been greyed out in the graphs to focus our attention on the SSDs. Otherwise, the results are colored by drive maker, with the Samsung 830 Series set apart in a much lighter shade of blue than the Intel drives. Excel only has so many colors, and you'd probably prefer that we avoid hot pink.

This is as close as our test suite gets to an all-out drag race, and the Samsung 830 Series has the fastest read speeds from 0-100% capacity. The line graph shows that the Samsung SSD maintained its blistering pace across the full extent of the drive, too. Its fastest rival, the Crucial m4 256GB, is 15MB/s slower on average.

Although all of the top SSDs nip at the Samsung 830 Series' heels in HD Tune's read speed test, there's no contest with writes. The Samsung SSD's average write speed is more than 100MB/s higher than the closest competition.

Technically, the SandForce-based SSDs achieve higher peak write speeds than the Samsung offering. As the line graph illustrates, though, those peaks are always followed by deep valleys, resulting in much lower average write speeds. The write speed of the Samsung 830 Series never drops more than 8MB/s below its maximum rate in this test.

HD Tune's burst speed tests are meant to isolate a drive's cache memory.

The Samsung 830 Series has the highest write burst speeds of any of the drives we tested. However, it's not quite as fast in HD Tune's burst read test, pushing the drive well down in the standings. Among the other high-capacity SSDs, only the OCZ Octane and Intel 320 Series offer slower read burst speeds.