Single page Print

Our testing methods
This review marks the debut of our new GPU test rigs, which we've already outed here. They've performed wonderfully for us, with lower operating noise, higher CPU performance in games, and support for PCI Express 3.0.

Oh, before we move on, please note below that we've tested stock-clocked variants of most of the graphics cards involved, including the Radeon HD 7970, 7870, 6970, and 5870 and the GeForce GTX 580 and 680. We agonized over whether to use a Radeon HD 7970 card like the XFX Black Edition, which runs 75MHz faster than AMD's reference clock. However, we decided to stick with stock clocks for the higher-priced cards this time around. We expect board makers to offer higher-clocked variants of the GTX 680, which we'll happily compare to higher-clocked 7970s once we get our hands on 'em. Although we're sure our decision will enrage some AMD fans, we don't think the XFX Black Edition's $600 price tag would have looked very good in our value scatter plots, and we just didn't have time to include multiple speed grades of the same product.

As ever, we did our best to deliver clean benchmark numbers. Tests were run at least three times, and we've reported the median result.

Our test systems were configured like so:

Processor Core i7-3820
Motherboard Gigabyte X79-UD3
Chipset Intel X79 Express
Memory size 16GB (4 DIMMs)
Memory type Corsair Vengeance CMZ16GX3M4X1600C9
DDR3 SDRAM at 1600MHz
Memory timings 9-9-11-24 1T
Chipset drivers INF update 9.3.0.1019
Rapid Storage Technology Enterprise 3.0.0.3020
Audio Integrated X79/ALC898
with Realtek 6.0.1.6526 drivers
Hard drive Corsair F240 240GB SATA
Power supply Corsair AX850
OS Windows 7 Ultimate x64 Edition
Service Pack 1
DirectX 11 June 2010 Update

Driver revision GPU core
clock
(MHz)
Memory
clock
(MHz)
Memory
size
(MB)
Asus GeForce GTX 560 Ti DirectCU II TOP ForceWare 295.73 900 1050 1024
Zotac GeForce GTX 560 Ti 448 ForceWare 295.73 765 950 1280
Zotac GeForce GTX 580 ForceWare 295.73 772 1002 1536
GeForce GTX 680 ForceWare 300.99 1006 1502 2048
Asus Matrix Radeon HD 5870 Catalyst 8.95.5-120224a 850 1200 2048
Radeon HD 6970 Catalyst 8.95.5-120224a 890 1375 2048
Radeon HD 7870 Catalyst 8.95.5-120224a 1000 1200 2048
Radeon HD 7970 Catalyst 8.95.5-120224a 925 1375 3072

Thanks to Intel, Corsair, and Gigabyte for helping to outfit our test rigs with some of the finest hardware available. AMD, Nvidia, and the makers of the various products supplied the graphics cards for testing, as well.

Unless otherwise specified, image quality settings for the graphics cards were left at the control panel defaults. Vertical refresh sync (vsync) was disabled for all tests.

We used the following test applications:

Some further notes on our methods:

  • We used the Fraps utility to record frame rates while playing a 90-second sequence from the game. Although capturing frame rates while playing isn't precisely repeatable, we tried to make each run as similar as possible to all of the others. We tested each Fraps sequence five times per video card in order to counteract any variability. We've included frame-by-frame results from Fraps for each game, and in those plots, you're seeing the results from a single, representative pass through the test sequence.

  • We measured total system power consumption at the wall socket using a Yokogawa WT210 digital power meter. The monitor was plugged into a separate outlet, so its power draw was not part of our measurement. The cards were plugged into a motherboard on an open test bench.

    The idle measurements were taken at the Windows desktop with the Aero theme enabled. The cards were tested under load running Skyrim at its Ultra quality settings with FXAA enabled.

  • We measured noise levels on our test system, sitting on an open test bench, using an Extech 407738 digital sound level meter. The meter was mounted on a tripod approximately 10" from the test system at a height even with the top of the video card.

    You can think of these noise level measurements much like our system power consumption tests, because the entire systems' noise levels were measured. Of course, noise levels will vary greatly in the real world along with the acoustic properties of the PC enclosure used, whether the enclosure provides adequate cooling to avoid a card's highest fan speeds, placement of the enclosure in the room, and a whole range of other variables. These results should give a reasonably good picture of comparative fan noise, though.

  • We used GPU-Z to log GPU temperatures during our load testing.

The tests and methods we employ are generally publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.