Single page Print

Our testing methods
We've freshened our suite of SSD results with a couple of additions from OCZ. The Vertex 4 256GB has been added to the mix, replacing the 512GB drive we tested initially. We've also added the Agility 4 256GB, a cheaper version of the Vertex that uses the same Marvell controller and Indilinx firmware but slower NAND. Both drives are running OCZ's latest firmware.

Crucial updated the firmware for its m4 SSD not long ago, and we're running the latest version on that drive. As far as we're aware, though, none of the other drives we've tested have newer firmware revisions that promise substantially better performance.

We've included a Western Digital Caviar Black mechanical desktop drive for reference, which gives us more than enough fodder for overstuffed graphs. Our test methods and systems haven't changed in probably a little too long, so the scores on the following pages can be compared to those in any of our storage reviews dating back to last September. We're already contemplating tests for a new suite, but the week after Windows 8's official launch wasn't a good time to bust those out.

If you're familiar with our test methods and hardware, the rest of this page is filled with nerdy details you already know; feel free to skip ahead to the benchmark results. For the rest of you, we've summarized the essential characteristics of all the drives we've tested in the table below. Our collection of SSDs includes representatives based on the most popular SSD configurations on the market right now. We're working on getting Samsung's new 840 Series SSDs in-house for testing, so stay tuned.

  Interface Cache Flash controller NAND
Corsair Force Series 3 240GB 6Gbps NA SandForce SF-2281 25-nm Micron async MLC
Corsair Force Series GT 240GB 6GBps NA SandForce SF-2281 25-nm Intel sync MLC
Corsair Neutron 240GB 6GBps 256MB LAMD LM87800 25-nm Micron sync MLC
Corsair Neutron GTX 240GB 6GBps 256MB LAMD LM87800 26-nm Toshiba Toggle DDR
Crucial m4 256GB 6Gbps 256MB Marvell 88SS9174 25-nm Micron sync MLC
Intel 320 Series 300GB 3Gbps 64MB Intel PC29AS21BA0 25-nm Intel MLC
Intel 335 Series 240GB 6Gbps NA SandForce SF-2281 20-nm Intel sync MLC
Intel 520 Series 240GB 6Gbps NA SandForce SF-2281 25-nm Intel sync MLC
OCZ Agility 4 256GB 6Gbps 512MB Indilinx Everest 2 25-nm Micron async MLC
OCZ Vertex 4 256GB 6Gbps 1GB Indilinx Everest 2 25-nm Intel sync MLC
Samsung 830 Series 256GB 6Gbps 256MB Samsung S4LJ204X01 2x-nm Samsung Toggle DDR
WD Caviar Black 1TB 6Gbps 64MB NA NA

We used the following system configuration for testing:

Processor Intel Core i5-2500K 3.3GHz
Motherboard Asus P8P67 Deluxe
Bios revision 1850
Platform hub Intel P67 Express
Platform drivers INF update 9.2.0.1030
RST 10.6.0.1022
Memory size 8GB (2 DIMMs)
Memory type Corsair Vengeance DDR3 SDRAM at 1333MHz
Memory timings 9-9-9-24-1T
Audio Realtek ALC892 with 2.62 drivers
Graphics Asus EAH6670/DIS/1GD5 1GB with Catalyst 11.7 drivers
Hard drives Corsair Force 3 Series 240GB with 1.3.2 firmware
Corsair Force Series GT 240GB with 1.3.2 firmware
Crucial m4 256GB with 010G firmware
Intel 320 Series 300GB with 4PC10362 firmware
WD Caviar Black 1TB with 05.01D05 firmware
OCZ Agility 4 256GB with 1.5.2 firmware
Samsung 830 Series 256GB with CXM03B1Q firmware
Intel 520 Series 240GB with 400i firmware
OCZ Vertex 4 256GB with 1.5 firmware
Corsair Neutron 240GB with M206 firmware
Corsair Neutron GTX 240GB with M206 firmware
Intel 335 Series 240GB with 335s firmware
Power supply Corsair Professional Series Gold AX650W
OS Windows 7 Ultimate x64

Thanks to Asus for providing the systems' motherboards and graphics cards, Intel for the CPUs, Corsair for the memory and PSUs, Thermaltake for the CPU coolers, and Western Digital for the Caviar Black 1TB system drives.

We used the following versions of our test applications:

Some further notes on our test methods:

  • To ensure consistent and repeatable results, the SSDs were secure-erased before almost every component of our test suite. Some of our tests then put the SSDs into a used state before the workload begins, which better exposes each drive's long-term performance characteristics. In other tests, like DriveBench and FileBench, we induce a used state before testing. In all cases, the SSDs were in the same state before each test, ensuring an even playing field. The performance of mechanical hard drives is much more consistent between factory fresh and used states, so we skipped wiping the HDDs before each test—mechanical drives take forever to secure erase.

  • We run all our tests at least three times and report the median of the results. We've found IOMeter performance can fall off with SSDs after the first couple of runs, so we use five runs for solid-state drives and throw out the first two.

  • Steps have been taken to ensure that Sandy Bridge's power-saving features don't taint any of our results. All of the CPU's low-power states have been disabled, effectively pegging the 2500K at 3.3GHz. Transitioning in and out of different power states can affect the performance of storage benchmarks, especially when dealing with short burst transfers.

The test systems' Windows desktop was set at 1280x1024 in 32-bit color at a 75Hz screen refresh rate. Most of the tests and methods we employed are publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.