Single page Print

Lining up the competition
To put the Black 4TB's performance into perspective, we've assembled a stack of other mechanical hard drives. The collection includes older, lower-capacity versions of the Black from back when the family had Caviar in its name. Also on the menu: 3TB drives from Seagate and Hitachi, both of which feature 7,200-RPM spindle speeds.

  Interface Cache Spindle speed Areal density
Hitachi Deskstar 7K3000 3TB 6Gbps 64MB 7,200 RPM 411 Gb/in²
Seagate Barracuda 3TB 6Gbps 64MB 7,200 RPM 625 Gb/in²
Seagate Momentus XT 750GB 6Gbps 32MB 7,200 RPM 541 Gb/in²
WD Caviar Black 1TB 6Gbps 64MB 7,200 RPM 400 Gb/in²
WD Caviar Black 2TB 6Gbps 64MB 7,200 RPM 400 Gb/in²
WD Black 4TB 6Gbps 64MB 7,200 RPM NA
WD Scorpio Black 750GB 3Gbps 16MB 7,200 RPM 520 Gb/in²
WD VelociRaptor VR200M 600GB 6Gbps 32MB 10,000 RPM NA
WD VelociRaptor 1TB 6Gbps 64MB 10,000 RPM NA

A pair of 10k-RPM VelociRaptors is also in the mix, although they're not really direct rivals to the Black 4TB. They are, however, two of the fastest mechanical drives around, and they both have five-year warranties. The Scorpio Black and Momentus XT give us a taste of what some of the best drives from the notebook scene have to offer, and the latter has a dash of flash-based hybrid caching for good measure.

While it's hard to rationalize how a 4TB mechanical hard drive really competes with SSDs that cost at least ten times more per gigabyte and tend to be capped at one eighth the total capacity, the comparison has to be made. Here's the stack of solid-state drives that will be squaring off against the mechanical field.

  Cache Flash controller NAND
Crucial m4 256GB 256MB Marvell 88SS9174 25nm Micron sync MLC
Intel 335 Series 240GB NA SandForce SF-2281 20nm Intel sync MLC
OCZ Agility 4 256GB 512MB Indilinx Everest 2 25nm Micron async MLC
OCZ Vector 256GB 512MB Indilinx Barefoot 3 25nm Intel sync MLC
Samsung 840 Series 250GB 512MB Samsung MDX 21nm Samsung Toggle TLC
Samsung 840 Pro 256GB 512MB Samsung MDX 21nm Samsung Toggle MLC

These six drives nicely cover some of the more popular controller and NAND combinations for modern SSDs. We have representatives from the high end of the spectrum, the more affordable side, and multiple points in between. All the drives are in the 240-256GB range, and you'll want to keep those limited capacities in mind. In desktop systems, SSDs are best thought of as complementary to mechanical storage rather than as a replacement for it.

If you're a TR already familiar with our storage test system and methods, feel free to skip ahead to the performance results. Apart from minor tweaks to the table below, the rest of this page is copied lazily from previous reviews.

Our test methods

We used the following system configuration for testing:

Processor Intel Core i5-2500K 3.3GHz
Motherboard Asus P8P67 Deluxe
Bios revision 1850
Platform hub Intel P67 Express
Platform drivers INF update 9.2.0.1030
RST 10.6.0.1022
Memory size 8GB (2 DIMMs)
Memory type Corsair Vengeance DDR3 SDRAM at 1333MHz
Memory timings 9-9-9-24-1T
Audio Realtek ALC892 with 2.62 drivers
Graphics Asus EAH6670/DIS/1GD5 1GB with Catalyst 11.7 drivers
Hard drives Crucial m4 256GB with 010G firmware
Intel 335 Series 240GB with 335s firmware
OCZ Agility 4 256GB with 1.5.2 firmware
OCZ Vector 256GB with 10200000 firmware
Samsung 840 Series 250GB with DXT07B0Q firmware
Samsung 840 Pro Series 256GB with DXM04B0Q firmware
Hitachi Deskstar 7K3000 3TB with MKA0A580 firmware
Seagate Barracuda 3TB with CC47 firmware
Seagate Momentus XT 750GB with SM12 firmware
WD Caviar Black 1TB with 05.01D05 firmware
WD Caviar Black 2TB with 01.00101 firmware
WD Scorpio Black 750GB with 01.01A01 firmware
WD VelociRaptor VR200M 600GB with 04.05G04 firmware
WD VelociRaptor 1TB with 04.06A00 firmware
WD Black 4TB with 01.01L01 firmware
Power supply Corsair Professional Series Gold AX650W
OS Windows 7 Ultimate x64

Thanks to Asus for providing the systems' motherboards and graphics cards, Intel for the CPUs, Corsair for the memory and PSUs, Thermaltake for the CPU coolers, and Western Digital for the Caviar Black 1TB system drives.

We used the following versions of our test applications:

Some further notes on our test methods:

  • To ensure consistent and repeatable results, the SSDs were secure-erased before almost every component of our test suite. Some of our tests then put the SSDs into a used state before the workload begins, which better exposes each drive's long-term performance characteristics. In other tests, like DriveBench and FileBench, we induce a used state before testing. In all cases, the SSDs were in the same state before each test, ensuring an even playing field. The performance of mechanical hard drives is much more consistent between factory fresh and used states, so we skipped wiping the HDDs before each test—mechanical drives take forever to secure erase.

  • We run all our tests at least three times and report the median of the results. We've found IOMeter performance can fall off with SSDs after the first couple of runs, so we use five runs for solid-state drives and throw out the first two.

  • Steps have been taken to ensure that Sandy Bridge's power-saving features don't taint any of our results. All of the CPU's low-power states have been disabled, effectively pegging the 2500K at 3.3GHz. Transitioning in and out of different power states can affect the performance of storage benchmarks, especially when dealing with short burst transfers.

The test systems' Windows desktop was set at 1280x1024 in 32-bit color at a 75Hz screen refresh rate. Most of the tests and methods we employed are publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.