Freshening up a home network can yield big bandwidth benefits

One of the funny things about being a PC enthusiast, for me, is how there's a constant ebb and flow of little projects that I end up tackling. At one point, I may be busy updating and tuning my HTPC, and shortly after that's finished, I'm on to something else. One way or another, it seems I'm almost always trying to fix or improve something.

My project lately has been optimizing my home network. By nature, my hardware testing work requires me to move lots of data around, whether it's deploying images to test rigs, downloading new games from Steam, or uploading videos to YouTube. I've noticed that I spend quite a bit of time waiting on various data transfer operations. Within certain limits, that's probably an indicator that some money could be well spent on an upgrade.

The first step in the process was getting my cable modem service upgraded. I'm too far out in the 'burbs to partake of the goodness of Google Fiber happening in downtown Kansas City, so I'm stuck with Time Warner Cable.

For a while, I'd been paying about 60 bucks a month for Road Runner "Turbo" cable modem service with a 15Mbps downstream and a 1Mbps upstream. We use a host of 'net based services like Netflix and Vonage, along with the aforementioned work traffic and hosting a Minecraft server for my kids, so both the upstream and downstream were feeling sluggish at times.

Time Warner Cable's website told me I could get 20Mbps downstream and 2Mbps upstream for $49.99 a month here in my area. There's also an option for 30Mbps down and 5Mbps up for $59.99. I was vaguely aware that my old-ish cable modem would have to be replaced with a newer model to enable the higher speed service, so I disconnected the modem and headed to the local Time Warner store, hoping to exchange it and upgrade my service.

When I got there, the salesperson informed me I could upgrade, but insisted that I'd need to pay an additional $15 per month above my current rate in order to get 20Mbps/2Mbps service. I asked if she was sure about that and whether there were any better pricing options, but she insisted. As she typed away, beginning the service change, I pulled up the Time Warner website on my phone, attempting to get that pricing info—which was conveniently hidden on the mobile site. I fumbled for a while as she kept typing, because apparently service tier changes require a 25-page written report. Only after my third inquiry, some bluster from me, and a whole lot more typing did she decide that she could give me the $49.99 price for 20Mbps/2Mbps service.

I later talked another rep into switching me to the 30Mbps/5Mbps service for $59.99, instead. Heh.

Anyhow, I eventually came home with a rather gigantic new cable modem and, for the about same price I'd been paying before, started enjoying double the downstream bandwidth and 5X the upstream. The difference is very much noticeable in certain cases, such as Steam downloads and YouTube uploads.

I suppose the morals of this story are: 1) if you have an older cable modem, you may be able to get faster service by swapping it out for a newer one, thanks to newer DOCSIS tech, and 2) you may also be eligible for better pricing if you do some research and prod your service provider sufficiently. Don't just take what they're giving you now or even the newer options they're offering to existing customers. Look into the offers they're making to new customers, instead, and insist on the best price.

Only days after I'd posted my shiny new results on Twitter, I turned my attention to our internal home network. Although I really like my Netgear WNDR3700 router, we've never used it to its full potential. The 5GHz band is practically empty, either due to lack of device support or range issues. Signals in that band just won't reach reliably into most of the bedrooms, so it's a no-go for anything mobile.

The range is great on our 2.4GHz network, but transfer rates are kind of pokey. There are many reasons for that. At the top of the list is a ridiculous number of devices connected at any given time. Between phones, tablets, PCs, and other devices, I can count 12 off the top of my head right now. There may be more.

You may be in the same boat. I didn't plan for this; it just happened.

Also, we have a silly number of other devices throwing off interference in the 2.4GHz range, including wireless mice, game controllers, Bluetooth headsets, the baby monitor, apparently our microwave oven, and probably a can opener or something, too.

One particular client system, my wife's kitchen PC, really needed some help. We store all of our family photos and videos on my PC, and my wife accesses them over the Wi-Fi network. As the megapixel counts for digital cameras have grown, so has her frustration. The process of pulling up thumbnails in a file viewer was excruciating.

Her system had a 2.4GHz 802.11g Wi-Fi adapter in it, which caused several problems. One was its own inherent limit of 54Mbps peak transfer rates. The other was the fact that, in order to best accommodate it and other older Wi-Fi clients, I had switched my router's 2.4GHz Wi-Fi mode from its "Up to 130Mbps" default mode to "Up to 54Mbps"—that setting seemed to help the Kitchen PC, but at the cost of lower peak network speeds for wireless-n clients.

This problem should have been solved ages ago, but it had momentum on its side. The Kitchen PC's motherboard had a built-in Wi-Fi adapter with a nice integrated antenna poking out of the port cluster, and I was reluctant to change it. However, a quick audit of the devices on our network revealed something important: the Kitchen PC's 802.11g adapter was the only 802.11b/g client left on our network. Replacing its Wi-Fi adapter wouldn't just speed up its connection; it would also allow me to experiment with the higher-bandwidth 2.4GHz modes on my router.

Once I resolved to make a change, it was like the girls from Jersey Shore: stupidly cheap and easy. I decided to measure the impact of various options by noting the speed of Windows file copy to the Kitchen PC. With its built-in 802.11g adapter, which has a stubby antenna attached, file copies averaged 2MB/s.


I then disabled the internal adapter and switched to an insanely tiny USB-based 802.11n adapter that I happened to have on hand. These things cost ten bucks and have zero room for an antenna, but they seem to work. I also switched the router to "Up to 130Mbps" mode on the 2.4GHz band, since the last legacy device was gone. The changes didn't help much; copies averaged 1.88MB/s, practically the same. However, when I flipped the router into its 20/40Hz mode ("Up to 300Mbps"), transfer rates more than doubled, to 5MB/s.

Better, but not great.

To really improve, I needed to make use of that practically empty 5GHz bandwidth. As a stationary system not far from the router, the Kitchen PC was a perfect candidate. I ordered up a Netgear dual-band USB Wi-Fi adapter—20 bucks for a refurb—to make it happen. This adapter is large enough to have a decent-sized internal antenna, in addition to the dual-band capability. Once it was installed, Windows file copy speeds on the 5GHz band (in 20/40Hz mode) were a steady 14MB/s—fully seven times what they were initially. And that's with just four of out five bars of signal strength.

There are a couple of lessons here, too, I think. First, wireless-b and -g devices are really stinkin' old, and moving to better adapter hardware is worth the modest cost involved. Getting rid of those old clients may even help speed up your whole network. Second, if you have a dual-band router with lots of clients, make use of that 5GHz bandwidth where possible, especially on stationary systems that are in range of the base station.

Of course, the big takeaway for this entire episode was this: devoting some attention to your home network can yield some nice benefits, especially if you've neglected it a bit. And heck, I haven't even started down the path to 802.11ac. Yet.

Tip: You can use the A/Z keys to walk threads.
View options

This discussion is now closed.