Oculus Rift's 'Crystal Cove' prototype tickles our rods and cones

The absolute highlight of last year's CES was getting a first look at an Oculus Rift prototype. Strapping on a Rift for the first time is a mind-blowing experience. It will change your view of what's possible in gaming in the next 5-10 years. Naturally, then, when it came time to plan for CES 2014, I made sure to schedule some time with the folks at Oculus to see what they—and especially new Oculus CTO John Carmack—have been doing.

As you may have heard, the new "Crystal Cove" prototype that Oculus brought to the show this year captured a major award: Best in Show for CES 2014. The news came to the folks in the Oculus meeting room late on Thursday last week, as we were getting a demo of the headset. Given what I saw through those goggles, the recognition seems well deserved.

Crystal Cove is the third generation of hardware Oculus has put on public display. The first generation, with a 720p LCD screen inside, was the one they showed at CES 2013. Later last year, Oculus upgraded to a higher-resolution 1080p LCD. Crystal Cove takes several important steps beyond that.

Much of the new tech in Crystal Cove is intended to overcome one of Oculus' biggest challenges: VR headsets don't work well for everyone. A lot of people develop a sense of vertigo, nausea, or fatigue after using a Rift prototype for a while, sometimes in only minutes. The problem is apparently caused by the disconnect between what your senses expect to see in response to head motions and what's actually displayed. If the system doesn't respond quickly or accurately enough, you may find yourself unexpectedly executing a technicolor yawn.

Even several tens of milliseconds worth of delay can be enough to trigger a problem, so Oculus has been pushing to squeeze any latency it can out of the sensor-to-display feedback loop. That's why the Crystal Cove prototype contains a 1080p AMOLED display. The AMOLED delivers markedly better color saturation and deeper blacks than the earlier LCDs. More importantly, though, the AMOLED has a much faster pixel-switching time: less than a millisecond, versus about 15 ms for the LCDs in prior Rift prototypes.

Interestingly enough, switching to an AMOLED alone doesn't fix the ghosting that's often evident when making sweeping movements with a Rift attached to your noggin. Oculus claims this ghosting effect isn't inherent to the display itself and isn't visible on a high-speed camera; instead, it's caused by an interaction with the human visual system. They have been able to mitigate the problem, however, by implementing a low-persistence display mode. The AMOLED is quick enough to flash on and off again very quickly, at a high enough rate that no flicker is perceptible to the human eye. What you'll notice, instead, is that the ghosting effect is essentially eliminated.

I got to see low-persistence mode in action, and it works. In the demo, I had the Rift attached to my face while I was looking at some big, red text in the virtual world ahead of me. The Oculus rep had me waggle my head back and forth, and I saw obvious ghosting. He then flipped on the low-persistence mode. The entire display became somewhat dimmer, though without any obvious flicker. I again waggled around my enormous noggin, and the text no longer left a blurry trail of red behind it as I moved.

Given the latency sensitivity of the application and the fact that a low-persistence display mode appears to be in the works for monitors based on Nvidia's G-Sync technology, I had to wonder if Oculus has been experimenting with G-Sync-like dynamic refresh rates, as well. (They totally are.) Sadly, the Oculus rep handling our demo wasn't willing to discuss that subject.

The other big enhancement in Crystal Cove is a major upgrade to the head tracking hardware. The sensors in previous Rift prototypes could detect orientation—roll, pitch, and yaw—but that was it. This revision incorporates infrared LEDs placed all around the front and sides of the headset, and their movement is tracked by a camera placed in front of the user. The camera and LEDs give the Rift true positional tracking of the wearer's head in 3D space.

As with the display changes, the positional tracking appears to work well. In our demo, we were encouraged to crane our necks around 180 degrees in an attempt to throw off the tracking. The display was set to revert to a grayscale mode with the loss of tracking, and invoking it was tough to do while sitting in a chair facing the camera, which is how the Rift is intended to be used. Even when one demo subject managed to contort himself well enough to hide the LEDs from the camera and cause a tracking failure, the system recovered quickly. The display shifted back to full color within two or three seconds after the headset came back into plain view.

The combination of positional tracking, a faster display, and low-persistence mode is meant to provide a better, more comfortable VR experience than past Rift prototypes. I wasn't able to use the Crystal Cove headset long enough to judge for myself, and I haven't felt many ill effects during brief stints with the earlier prototypes. However, the Oculus folks seem to think they've pretty much conquered the sickness problem. Even late in the week at CES, after presumably hundreds of demos to the press and industry, they claimed not to have found anyone yet who was sickened by using a Crystal Cove prototype. If true, that's very good news.

I can tell you that the Crystal Cove hardware provides an even more immersive and borderline magical experience than earlier revisions of the Rift. The AMOLED is a big upgrade just for the color quality and sense of depth. Also, the software being demoed makes much better use of the VR headset.

We first got a look at an Unreal Engine 4 demo created by the guys at Epic called Strategy VR. The visuals in it are rich and detailed. I found myself hunching over and looking down, with my head nearly between my legs, peering over the edge of a virtual cliff in wonder.

The real star of the show, though, was the demo of Eve Valkyrie, the in-development game that's slated to be a Rift launch title. The Rift and this game breathe incredible new life into a genre that's been on the brink of death for some time now. When you slide on the headset, you find yourself sitting in the virtual cockpit of a space fighter. Some of the gauges are hard to make out at first, but if you lean forward, the text becomes clearer and easier to read. Above the gauges is a canopy, with a reeling space battle taking place in the sky beyond. The illusion of being there is strong, more so when you find yourself craning your neck to peer out of the canopy above and to your left, attempting to track an enemy fighter positioning itself on your six.

Having never played before, I scored -30, and my demo was over quickly due to an early death. The realism was impeccable.

Given the progress Oculus has made in the past year, we were left wondering how long it will be until the consumer version of the Rift hits store shelves. Right now, Oculus is being very cautious; it hasn't stated any timelines for the release of a final product. The firm says its goal is to be sure "VR is the right experience" for everyone who buys a headset.

Several components of that experience still need to come together before the Rift is ready for prime time. Oculus admits it's still working to improve the Rift's display resolution between now and the consumer product launch. That seems wise to me. When it's that close to your face and divided between two eyes, a 1080p display feels pretty low-res. If you stop and look, you can see the individual subpixels in the Crystal Cove's AMOLED array.

Also, the Rift currently lacks an audio component, which is a major omission. Oculus admits as much, calling positional audio "super-critical" to a VR experience, but it says it won't reveal any info yet about partnerships on the audio front. I assume that means there will be some.

For what it's worth, AMD had a gen-two Rift prototype on display in its CES booth along with a pair of headphones featuring positional audio generated by GenAudio's AstoundSound middleware and accelerated by a TrueAudio DSP block. I gave this setup a brief spin, and I'd say that's a pretty good start.

Oculus also has to make sure the Rift's game support is broad and deep enough to make the VR headset a compelling purchase. Eve Valkyrie looks amazing, but it won't suffice on its own. Fortunately, the company claims to have shipped about 50,000 Rift developer kits already, which should mean plenty of developers have Rifts strapped to their faces. In fact, one of the strange problems Oculus has now is not being able to track what everyone is doing with its development hardware. If the final headset is anywhere near as compelling as the prototypes, we've got to think there will be a steady stream of Rift-enabled applications released in the next couple of years.

That said, we could easily be waiting until CES 2015 or beyond until the Rift makes its way into its final, near-$300 form and ships to consumers everywhere. Given everything, it's easy to understand why that's the case. Still, having seen the goodness of Crystal Cove in action, a big part of me would like very much to hurry up and get on with the future, because it's really gonna be good.

Tip: You can use the A/Z keys to walk threads.
View options

This discussion is now closed.