Single page Print

Noise levels
Noise levels were measured with a TES-52 Digital Sound Level meter 1" from the side of the drives at idle and under an HD Tune seek load. Drives were run with the PCB facing up.

Our noise level and power consumption tests were conducted with the drives connected to the motherboard's P55 storage controller.

Solid-state drives are silent, so the noise levels you see for the X25-M and Nova represent the noise generated by the rest of the system. The VelociRaptor is pretty quiet at idle, adding less than five decibels to the system baseline. However, the VR200M is much louder than the original when seeking, and the chattering is nearly as loud as what's generated by the notoriously noisy Caviar Black 2TB.

Most mechanical hard drives have an Automatic Acoustic Management (AAM) value that can be set between 128 and 254. Manipulating this setting tends not to affect idle noise levels, but it can dramatically impact seek noise and access times. To get an idea of the sort of performance and acoustic range available with our collection of mechanical drives, we've tested the seek noise level and random access time of each at the extremes of the AAM scale. By default, both of the VelociRaptors and the Caviar Black have their AAM values set to 254.

Although there's little difference in seek times between the two VelociRaptors, the VR150M is definitely the quieter of the two. At its loudest, the original has the same seek noise levels as the new drive at its quietest. That result isn't entirely unexpected given the fact that the VR200M is packing an extra platter. Drives with more platters tend to be louder than those with fewer.

Power consumption
For our power consumption tests, we measured the voltage drop across a 0.1-ohm resistor placed in line with the 5V and 12V lines connected to each drive. We were able to calculate the power draw from each voltage rail and add them together for the total power draw of the drive. Drives were tested while idling and under an IOMeter load consisting of 256 outstanding I/O requests using the workstation access pattern.

The new VelociRaptor consumes a little more power than the VR150M at idle, but the two are pretty even under load. Both are more power-efficient than the Caviar Black 2TB, but neither comes close to matching the frugal power draw of the two SSDs.

Capacity per dollar
After spending seven pages rifling through a stack of performance graphs, it might seem odd to have just a single chart set aside for capacity. After all, the amount of data that can be stored on a hard drive is no less important than how fast that data can be accessed. But one graph is really all we need to express how these drives stack up in terms of their capacity, and more specifically, how many bytes each of your hard-earned dollars might actually buy.

We took drive prices from Newegg to establish an even playing field for all the contenders. Mail-in rebates weren't included in our calculations, and since the VR200M isn't for sale online yet, we had to use its suggested retail price of $329. Rather than relying on manufacturer-claimed capacities, we gauged each drive's capacity by creating an actual Windows 7 partition and recording the total number of bytes reported by the OS. Having little interest in the GB/GiB debate, I simply took that byte total, divided by a Giga (109), and then by the price. The result is capacity per dollar that, at least literally, is reflected in gigabytes.

We've spent the last few pages watching the VelociRaptor get smacked around by a couple of SSDs, but there's more to this drive than just performance. With 600GB under the hood, the VR200M has a lot more capacity than current-generation SSDs, and it costs a heck of a lot less per gigabyte. The new VelociRaptor even offers a more attractive cost per gigabyte than the old VR150M.

Of course, the Caviar Black still has the best cost per gigabyte of the bunch. With two terabytes bursting from its 3.5" seams and a sub-$300 street price, we wouldn't have expected anything less.