Single page Print

Our IOMeter workloads are made up of randomized access patterns, making them perfect candidates to exploit the wicked-fast access times of solid-state storage. The app bombards drives with an escalating number of concurrent IO requests and should do a good job of simulating the demanding environments common in enterprise applications. We tested using the "pseudo random" data pattern, which is IOMeter's old default and somewhat amenable to the compression mojo built into SandForce controllers. Additional testing with the "full random" data pattern revealed only a minor drop in the Agility 2's performance, so we're sticking with pseudo random for now.

Over the last few years, we've watched new storage controller drivers (including the Intel RST drivers used in this review) effectively cap IOMeter performance scaling beyond 32 outstanding I/O requests. The Serial ATA spec's Native Command Queue is 32 slots deep, and more than one drive maker has told us that this queue is rarely full. As a result, we're only testing up to 32 concurrent I/O requests.

Three of our four IOMeter workloads—the web server, database, and workstation access patterns—are made up of a mix of read and write requests. With those workloads, all of the Intel SSDs offer eerily similar transaction rates. There's some variation between the three drives, but they're all in the same ballpark. Unfortunately for Intel, the SSDs from OCZ and Crucial offer much higher transaction rates.

Switching to the web server access pattern, which is all reads and no writes, changes the competitive landscape dramatically. The Intel drives are right in the thick of things, although the 320 Series is the slowest of the three. At least the new Intel drive hits a higher peak than a couple of the other SSDs.

Don't forget about the lowly Spinpoint, either. The mechanical drive's transaction rates are low enough that the line representing them is almost on the x-axis. Despite faring poorly versus some of the other SSDs, the Intel 320 Series absolutely destroys one of the best 7,200-RPM desktop drives on the market.