Intel’s 320 Series solid-state drive

In the world of solid-state drives, Intel reminds me a little of Jon Jones. Yes, I’m going there. From very early on, it was clear that the UFC’s new light-heavyweight champion had the combination of genetics and talent to become something special in the sport of mixed martial arts. With a tall frame and long limbs, Jones had the reach to strike opponents from well outside their range. Freakish athleticism and exceptional wrestling allowed him to keep the fight standing or to ragdoll victims to the ground. The pieces were there, and he put them together pretty quickly.

The pieces that make Intel a perfect fit for SSDs aren’t quite as flashy, but they’re no less tailored for this burgeoning market. Intel is renowned for its ability to produce high-performance semiconductors using increasingly advanced fabrication techniques, making it an ideal provider of the NAND flash memory chips provide a drive’s capacity. Over years of CPU and chipset development, Intel has also earned a reputation for building wicked-fast memory and storage controllers—expertise that no doubt applies nicely to the firmware and controller logic that links banks of NAND dies to a Serial ATA port.

Intel’s SSD career started back in September 2008 with the original X25-M, which used the combination of a custom 10-channel storage controller and 50-nano flash to dominate the solid-state alternatives available at the time. In July of 2009, Intel returned to the ring with a second-generation X25-M featuring a tweaked controller design and more advanced memory built with 34-nm fabrication technology. Like its predecessor, the gen-two drive offered better overall performance than its contemporary rivals, cementing Intel’s status as a legitimate favorite in the world of solid-state storage.

Earlier this month, the chip giant detoured from the X25-M’s evolution to release the Intel 510 Series. Rather than keeping everything in the family, this new high-end model spreads a layer of Intel’s own firmware atop the same 6Gbps Marvell controller found inside SSDs from competing manufacturers. Now, just a few weeks after the 510 Series’ release, the X25-M is back in a third generation dubbed the Intel 320 Series.

Yep, the Intel 320 Series even looks like an X25-M

Like the X25-M models that have come before it, the Intel 320 Series packs MLC flash memory based on the latest process node in chip fabrication technology. This 25-nm NAND is paired with Intel’s existing controller silicon, which has been augmented by firmware tweaks and new capabilities designed with data integrity in mind.

As the 320 model number suggests, the third-generation X25-M is meant to slot in below the high-end 510 Series. Don’t get your hopes up for a new standard in storage performance. Intel appears to have focused most of its efforts on improving this drive’s reliability and lowering costs. Those strike me as sensible points of focus for a mid-range SSD making the transition to 25-nano flash. As Intel astutely points out, the performance delta between decent SSDs and mechanical hard drives is huge next to the comparatively minor differences in performance between various SSD models. The Intel 320 isn’t meant to challenge for the SSD performance crown. Instead, it’s looking to lure more folks into the SSD fold.

When briefing the press last week, Intel spent much more time talking about reliability than it did discussing performance. We haven’t heard much from SSD makers on this front, but Intel revealed some interesting figures about the X25-M, which has been deployed internally throughout the company. Among the 50,000 drives pressed into service by Intel’s IT department, the annual failure rate is claimed to be 0.61%. Intel also quotes a 0.26% failure rate for the over 100,000 X25-Ms in use by ZT Systems, an enterprise customer running the drives in a datacenter environment. For the over 800,000 SSDs that Intel has shipped into the distribution channel, the failure rate is said to be only 0.4%. Since these figures come from Intel, we’ll need to add salt—but perhaps only a sprinkle. Earlier this year, a French retailer released reliability stats on hard drive failures. Intel SSDs had a failure rate of 0.59%, while the solid-state competition from Corsair, Crucial, Kingston, and OCZ ranged from 2.17-2.93%.

25-nano flash in all its next-generation glory

Even lower failure rates are expected from the Intel 320 Series, which is at a bit of a challenge given its use of 25-nano NAND. Moving to a smaller fabrication process allows Intel to squeeze more flash dies onto a single wafer, so it’s a necessary step toward lowering SSD prices. However, the smaller memory chips are more prone to errors and have less endurance than their 34-nano predecessors, putting Intel’s latest at a disadvantage right out of the gate.

Intel has worked closely with Micron on 25-nano flash development, but the processor giant says its testing procedures are completely separate from those of its partner. As it does with CPUs, Intel sorts through all the chips it produces in a process called binning. Flash dies are tested for performance and endurance, and only the best make the cut for inclusion in Intel SSDs. Although you may find Intel-branded flash chips on solid-state drives from other manufacturers, those chips haven’t necessarily undergone the same level of testing as the flash set aside for Intel’s own drives.

According to OCZ, the 25-nm Micron flash chips in its latest Vertex 3 SSD are good for 3,000 write-erase cycles. Intel declined to divulge the write-erase endurance of the 320 Series’ flash chips, but it does offer endurance information for the drive as a whole. The Intel 320 Series is guaranteed to write 20GB of data per day for five years in a consumer environment. With enterprise workloads, the drive is rated for 60TB worth of writes. Those estimates look to be a little conservative given the fact that Micron’s own RealSSD C400, otherwise known as the Crucial m4, has 25-nano flash and is said to be capable of writing 72TB of data over its lifetime.

Six less-than-super capacitors flank a DRAM cache

Regardless of how long individual flash cells are supposed to survive, failures are inevitable. The Intel 320 Series protects against any data loss that might occur in this situation by employing “surplus data arrays.” Also referred to as XOR—the logical operation often used to calculate parity bits for RAID arrays—this redundancy scheme is capable of recovering data from a failed bit, block, or even an entire failed die. Intel describes XOR as a NAND-level RAID 4, making it sound rather similar to the RAISE technology employed by SandForce controllers.

RAISE is described as more of a RAID 5 than a RAID 4, though. SandForce says RAISE spreads redundancy data across the entire drive, and that the storage capacity lost amounts to the capacity of one flash die. Intel isn’t specific about the amount of storage consumed by XOR, but it does say the redundancy data is rolled into the 7% of total flash capacity reserved for use by the controller. According to Intel, XOR is governed by a mix of hardware and firmware that doesn’t introduce any performance-sapping overhead. The only time it’ll slow the drive down is when data is being recovered in the event of a flash failure.

How often might such a failure occur? Intel says it ran nearly 1,400 drives through a simulated five-year workload. Across all of them, XOR stepped in to recover data a total of 14 times. Thanks to its assistance, only a couple of the Intel 320 Series drives suffered irrecoverable failures. Intel ran the old X25-M through a similar test and had five drives fail, suggesting that the new model should be more reliable than the old one—thanks to XOR. Without the redundancy scheme, those 14 XOR recoveries would have pushed the number of Intel 320 Series failures to 16. Intel does point out that its 320 Series is brand new, while the X25-M is a mature product whose flash has been in production for quite some time now. I’d expect error rates in Intel’s 25-nano flash to decrease over the life of the product. In the interim, XOR should provide some peace of mind.

Speaking of peace of mind, the Intel 320 series includes a measure of power-loss protection via a series of small capacitors visible in the picture above. When the drive detects imminent power loss, it disconnects power from the host and transfers data out of its buffers and into the NAND. All other activities are de-prioritized during this time, ensuring that the drive doesn’t lose any data when the power cuts out. This particular feature should appeal to the enterprise customers who have apparently become quite fond of the X25-M. Intel says its consumer-grade SSDs have become more popular among enterprise clients than the X25-E it designed specifically for the market.

Another Intel 320 Series feature that’s sure to please corporate types is the inclusion of 128-bit AES encryption. This hardware-based encryption scheme can be invoked by setting an ATA user password, and there’s supposed to be no performance impact.

Performance ratings and pricing

As you’ve probably gathered by now, the Intel 320 Series’ focus isn’t so much on performance. The drive doesn’t even have a 6Gbps Serial ATA interface. Because it uses the same controller chip as the old X25-M, you’re limited to 3Gbps connectivity. Intel points out that there are still quite a lot of systems lacking next-gen SATA support and claims it’s optimized the 320 Series specifically for them. As a result, the firm says you’ll get better performance out of the drive when it’s plugged into a 3Gbps SATA port than you would with a high-end Intel 510 Series, which was designed with 6Gbps SATA in mind.

The Intel 320 Series’ PC29AS21BA0 controller can trace its roots all the way back to the original X25-M. So, yeah, it’s been around for a while. It’s also come a long way since. Intel’s first SSD weighed in at 80GB and was rated for 250MB/s reads and 70MB/s writes. This latest solid-state offering is available in capacities up to 600GB with sequential read and write ratings of 270 and 220MB/s, respectively.

Flash controller Intel PC29AS21BA0
Interface 3Gbps
Flash type Intel 25-nm MLC NAND
Available capacities 40, 80, 120, 160, 300, 600GB
Cache size 32MB (40, 80GB)


Sequential reads 200MB/s (40GB)

270MB/s (80-600GB)

Sequential writes 45MB/s (40GB)

90MB/s (80GB)

130MB/s (120GB)

165MB/s (160GB)

205MB/s (300GB)

220MB/s (600GB)

Random 4KB reads 30,000 IOps (40GB)

38,000 IOps (80, 120GB)

39,000 IOps (160GB)

39,500 IOps (300, 600GB)

Random 4KB writes 3,700 IOps (40GB)

10,000 IOps (80GB)

14,000 IOps (120GB)

21,000 IOps (160GB)

23,000 IOps (300, 600GB)

Warranty length Three years

The 270MB/s read rate is capped by the 3Gbps SATA link, while the drive’s write speed is dependent on the number of flash chips available to the controller. Lower-capacity drives have fewer flash chips, resulting in lower sequential throughput. Drive capacity also affects performance in random 4KB reads and writes, although its impact on writes is much larger than it is on reads.

The Intel 320 Series’ performance ratings may not break any records, but they are more impressive than what’s offered by the X25-M. The gains in rated read performance are relatively modest. However, the ratings for both sequential and random writes are way up. The X25-M 160GB is only rated for 100MB/s sequential writes and 8,600 random 4KB writes, while its Intel 320 Series counterpart is good for 165MB/s and 21,000 IOps, respectively. One may expect even better performance from the 300GB model we’ll be testing today.

The Intel 320 Series: naked

There’s quite a range in performance ratings between the various Intel 320 Series capacities because there’s such a big spread of available sizes. The line starts with a 40GB model that nicely supplants the X25-V and reaches all the way up to 300GB and 600GB variants that represent huge steps up from the 160GB maximum capacity of the X25-M family. Most folks, I suspect, will be shopping in the 80-160GB range.

Speaking of shopping, we should discuss pricing. The high cost per gigabyte of solid-state drives has probably been the primary obstacle to their widespread adoption. 25-nano flash promises some relief, although its impact may not be felt fully until 25-nano fabrication technology matures. Here’s how the Intel 320 Series’ official pricing in 1,000-unit quantities compares to the street price of the X25-M right now.

40GB 80GB 120GB 160GB 300GB 600GB
Intel 320 Series $89 $159 $209 $289 $529 $1,069
Intel X25-M (street) $95 $172 $230 $390 NA NA

Right off the bat, Intel’s latest SSD should cost a little less than the old one. The savings aren’t as dramatic as one might hope, but we’ve come a long way since the original X25-M. Intel’s first SSD debuted in an 80GB capacity that cost $595. Less than a year later, the second-generation X25-M served up 80GB for $220. The 80GB Intel 320 Series should hit the street at around $160, which is a 73% price reduction over a two-and-a-half year span. Remember, too, that drives are getting faster as they’re becoming cheaper. Solid-state drive prices may not be dropping at a pace fast enough to satisfy folks stubbornly waiting for them to hit $1/GB, but incremental progress is being made.

Our testing methods

Before getting into our benchmark results, let’s take a quick look at the mix of rivals we’ve put together to face the Intel 320 Series and the methods we use to test storage devices here at TR. We include these details to help you better understand and replicate our results, but if you’re already familiar with our approach to storage testing, feel free to skip ahead to the benchmarks. We won’t be offended.

Today, the Intel 320 Series will face off against a collection of solid-state drives based on a handful of different controllers. Note that about half of the SSDs have 6Gbps SATA interfaces. We’re using a Sandy Bridge motherboard with 6Gbps SATA connectivity, so those drives have a distinct advantage over Intel’s latest. The Agility 2 also has somewhat of an edge thanks to a 28% overprovisioning percentage, four times what’s typical for consumer-grade SSDs. We’ve found SandForce-based SSDs tend to run slower when they set aside a more traditional 7-8% of their flash capacity as spare area.

Flash controller Interface speed Cache size Total capacity
Corsair Nova V128 Indilinx Barefoot ECO 3Gbps 64MB 128GB
Crucial RealSSD C300 Marvell 88SS9174-BJP2 6Gbps 256MB 256GB
Crucial m4 Marvell 88SS9174-BLD2 6Gbps 256MB 256GB
Intel X25-M G2 Intel PC29AS21BA0 3Gbps 32MB 160GB
Intel 320 Series Intel PC29AS21BA0 3Gbps 64MB 300GB
Intel 510 Series Marvell 88SS9174-BKK2 6Gbps 128MB 250GB
OCZ Agility 2 SandForce SF-1200 3Gbps NA 100GB
OCZ Vertex 3 SandForce SF-2281 6Gbps NA 240GB
Samsung Spinpoint F3 NA 3Gbps 32MB 1TB

We’ve updated all the drives to their latest and greatest firmware revisions with the exception of the Nova. This Indilinx-based drive debuted well into the controller’s life, so the initial release should have all of the kinks ironed out. Corsair tells us there are no firmware updates for the Nova.

You’ll notice that we’ve also included a traditional hard drive this time around. The Spinpoint F3 1TB is our favorite 7,200-RPM desktop drive at the moment, and it’ll give us a sense of how the Intel 320 Series and other SSDs compare to the performance of contemporary mechanical storage.

We’re in the midst of overhauling our storage test systems here at TR, a plan that was stalled briefly by Intel’s Sandy Bridge chipset bug. The new suite of tests is coming soon, and it should be worth the wait. In the interim, we’ve whipped up an abbreviated version with a handful of new and old tests that cover the basics.

The block-rewrite penalty inherent to flash memory, the TRIM command designed to offset it, and the last workload an SSD tackled can all impact drive performance, so we’ll provide a little more detail on exactly how we test SSDs. Before testing, each drive is returned to a factory-fresh state with a secure erase. Next, we fire up HD Tune and run a series of read and write tests covering transfer rates and random access times. HD Tune is designed to run on unpartitioned drives, so TRIM won’t be a factor. The command requires a file system to be in place.

After HD Tune, we partition the drives and fire up a series of IOMeter workloads using the latest version of that app. When running on a partitioned drive, IOMeter first fills it with a single file, firmly putting SSDs into a used state in which all of their flash pages have been occupied. We delete that file before moving onto our used-state file copy tests, after which we tackle disk-intensive multitasking. Our multitasking benchmark requires an unpartitioned drive; like HD Tune, it shouldn’t be affected by TRIM.

With our multitasking tests completed, we secure-erase the drives once more and launch a final instance of our scripted file copy test. This procedure should ensure that each SSD is tested on an even playing field—and in best- and worst-case performance scenarios.

We run all our tests at least three times and report the median of the results. We’ve found that IOMeter performance can fall off after the first couple of runs, so we use five in total and throw out the first two. Each drive’s performance over the last three runs has been pretty consistent thus far. We’ve also seen remarkable consistency with our new FileBench copy test, which we’re currently running five times while we tune the scripting. We used the following system configuration for testing:

Processor Intel Core i7-2500K 3.3GHz
Motherboard Asus P8P67 PRO
Bios revision 1305
Platform hub Intel P67 Express
Platform drivers INF update


Memory size 8GB (2 DIMMs)
Memory type Corsair Vengeance DDR3 SDRAM at 1333MHz
Memory timings 9-9-9-24-1T
Audio Realtek ALC892 with 2.58 drivers
Graphics Gigabyte Radeon HD 4850 1GB with Catalyst 11.2 drivers
Hard drives Corsair Nova V128 128GB with 1.0 firmware
Intel X25-M G2 160GB with 02M3 firmware
Intel 510 Series 250GB with PWG2 firmware
OCZ Agility 2 100GB with 1.29 firmware
Crucial RealSSD C300 256GB with 0006 firmware

OCZ Vertex 3 with 1.11 firmware
Samsung Spinpoint F3 1TB

Crucial m4 256GB with 0001 firmware

Intel 320 Series 300GB with 4PC10302 firmware

Power supply OCZ Z-Series 550W
OS Windows 7 Ultimate x64

Thanks to Asus for providing the system’s motherboard, Gigabyte for the graphics card, Intel for the CPU, Corsair for the memory, OCZ for the PSU, and Western Digital for the Caviar Black 1TB system drive.

We used the following versions of our test applications:

The test systems’ Windows desktop was set at 1280×1024 in 32-bit color at a 75Hz screen refresh rate. Vertical refresh sync (vsync) was disabled for all tests.

Most of the tests and methods we employed are publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.

HD Tune — Transfer rates

HD Tune lets us look at transfer rates in a couple of different ways. We use the benchmark’s “full test” setting, which tracks performance across the entire drive and lets us create the fancy line graphs you see below. This test was run with its default 64KB block size.

As you can see, we’ve painted our results in a rainbow of colors to make the graphs easier to interpret. In the bar graphs, drives are colored by manufacturer, with the 320 Series highlighted in a brighter shade of blue than the other Intel drives. The line graphs follow a similar color scheme with some additional shades to cover the multiple Intel and OCZ models.

The Intel 320 Series is just a little bit slower than its predecessor in this test. I expect the drive’s 3Gbps interface is the bottleneck here. Notice that all the 3Gbps drives are clustered around 234-242MB/s. The 6Gbps SSDs are considerably faster, and there are larger differences in sequential read performance between them.

Even though it’s not as quick as those high-end drives, the Intel 320 Series is still substantially faster than a 7,200-RPM desktop hard disk drive. The Spinpoint F3’s 116MB/s average read speed is less than half what you get with Intel’s newest SSD.

Although it may not read much faster than the old X25-M, the Intel 320 Series fares much better with writes. The drive’s 201MB/s write speed doubles the X25-M’s and is enough to match Crucial’s RealSSD C300. Intel’s 510 Series boasts quite a step up in sequential write performance from the 320 Series, though.

Again, look at how favorably this drive, effectively a third-generation X25-M, compares to a mechanical desktop drive. The Spinpoint is actually a little faster than Intel’s gen-two SSD, but the 320 Series blows it out of the water.

HD Tune’s burst speed tests are meant to isolate a drive’s cache memory.

Interestingly, the Intel 320 Series’ strong write performance hits a bit of a snag in HD Tune’s burst speed tests. The drive manages just 90MB/s, which is slower than all of its rivals, including the old X25-M. Things look better with reads, where Intel’s most recent solid-state offering appears to hit the same wall as the other 3Gbps models.

HD Tune — Random access times

In addition to letting us test transfer rates, HD Tune can measure random access times. We’ve tested with four transfer sizes and presented all the results in a couple of line graphs. We’ve also busted out the 4KB and 1MB transfers sizes into bar graphs that should be easier to read.

The line graph is a perfect example of how the difference in performance between solid-state and mechanical hard drives is much greater than the gaps between the various SSDs. Solid-state storage is in another class entirely when it comes to random access times.

Within that class, the Intel 320 Series offers respectable access times that almost exactly match those of the X25-M. Both drives have quicker access times than Intel’s high-end 510 Series at the smaller 4KB transfer size, but the 510 ends up one millisecond quicker at the 1MB transfer size.

Once again, we see a beautiful illustration of the order-of-magnitude advantage that SSDs enjoy over mechanical hard drives. The Intel 320 Series looks good here, boasting one of the lowest access times at the 4KB transfer size and a big speedup over the X25-M in 1MB transfers.

TR FileBench — Real-world copy speeds

Our resident developer, Bruno “morphine” Ferreira, has been hard at work on a new file copy benchmark for our storage reviews. FileBench is the result of his efforts. This shining example of scripting awesomeness runs through a series of file copy operations using Windows 7’s xcopy command. Using xcopy produces nearly identical copy speeds to dragging and dropping files using the Windows GUI, so our results should be representative of real-world performance.

To reduce the number of external variables, FileBench runs entirely on the drive that’s being tested. Files are copied from source folders to temporary targets that aren’t deleted until all testing is complete. Copy speeds were tested with the SSDs fresh from a secure erase and in a tortured used state after more than half a day’s worth of IOMeter thrashing.

To gauge performance with different kinds of files, we tested with four sets. The movie set includes six video files of the sort one might download off BitTorrent. Total payload: 4.1GB. Our MP3 file set uses a chunk of my music archive, which is made up of high-bitrate MP3s and associated album art. This one has 549 files that add up to 3.47GB. The Mozilla file set includes the huge selection of files necessary to compile Firefox. All told, there are 22,696 files spread across only 923MB. Finally, we have the TR file set, which contains several years worth of the images, HTML files, and spreadsheets behind my reviews. This set has the largest number of files at 26,767, but it’s heftier than the Mozilla set with 1.7GB worth of data.

The nature of each file set has a palpable impact on the Intel 320 Series’ copy performance. Take the movie and MP3 file sets, for example. They’re made up of relatively small numbers of large- and medium-sized files, respectively. With both, the Intel 320 Series proves to be measurably faster than the X25-M. However, the two drives are evenly matched in the Mozilla and TR file sets, which are made up of extremely high numbers of small files. The additional overhead associated with transferring a high volume of small files is enough to lower copy speeds dramatically for all the SSDs.

Versus the 6Gbps crowd, the Intel 320 Series’ copy speeds simply can’t keep up. The new Intel SSD looks better when framed against its 3Gbps competitors, which are all slower with the movie and MP3 file sets. That said, the Agility 2 copies the Mozilla and TR files faster.

Despite being handily outclassed in HD Tune’s sequential read and write speed tests, the Spinpoint doesn’t look too bad when copying files in the real world. Our lone mechanical drive is more competitive with small files than it is with larger ones, but it still loses to the Intel 320 Series across the board.

TR DriveBench — Disk-intensive multitasking

TR DriveBench allows us to record the individual IO requests associated with a Windows session and then play those results back on different drives. We’ve used this app to create a set of multitasking workloads that combine common desktop tasks with disk-intensive background operations like compiling code, copying files, downloading via BitTorrent, transcoding video, and scanning for viruses. You can read more about these workloads and desktop tasks on this page of our SSD value round-up.

A new version of DriveBench complete with updated traces is in the works. This old suite of workloads still has some life left in it, though.

Below, you’ll find an overall average followed by scores for each of our individual workloads. The overall score is an average of the mean performance score with each multitasking workload.

Well, that’s close. Our DriveBench overall average puts the Intel 320 Series nearly even with the X25-M, making it a little faster than our other two 3Gbps SSDs. This performance puts Intel’s latest in the middle of the pack, which is still far ahead of the Spinpoint. The Samsung mechanical drive crunches IOps at less than one quarter the speed of the 300GB SSD.

Let’s break down the overall average into individual test results to see if anything stands out.

Interestingly, the Intel 320 Series scores lower than the X25-M with all but the file copy workload. That workload also proves to be fertile ground for the 510 Series, illustrating a conscious effort by Intel to bias the performance of its consumer-oriented drives toward better sequential throughput.

As a control, we also recorded a trace of our foreground tasks, while nothing was going on in the background.

DriveBench lets us start recording Windows sessions from the moment the storage driver loads during the boot process. We can use this capability to gauge boot performance, this time with TweetDeck, Pidgin, AVG, Word, Excel, Acrobat, and Photoshop loading from the Windows startup folder.

These results don’t shed much new light on the Intel 320 Series’ performance characteristics, so let’s move on.


Our IOMeter workloads are made up of randomized access patterns, making them perfect candidates to exploit the wicked-fast access times of solid-state storage. The app bombards drives with an escalating number of concurrent IO requests and should do a good job of simulating the demanding environments common in enterprise applications. We tested using the “pseudo random” data pattern, which is IOMeter’s old default and somewhat amenable to the compression mojo built into SandForce controllers. Additional testing with the “full random” data pattern revealed only a minor drop in the Agility 2’s performance, so we’re sticking with pseudo random for now.

Over the last few years, we’ve watched new storage controller drivers (including the Intel RST drivers used in this review) effectively cap IOMeter performance scaling beyond 32 outstanding I/O requests. The Serial ATA spec’s Native Command Queue is 32 slots deep, and more than one drive maker has told us that this queue is rarely full. As a result, we’re only testing up to 32 concurrent I/O requests.

Three of our four IOMeter workloads—the web server, database, and workstation access patterns—are made up of a mix of read and write requests. With those workloads, all of the Intel SSDs offer eerily similar transaction rates. There’s some variation between the three drives, but they’re all in the same ballpark. Unfortunately for Intel, the SSDs from OCZ and Crucial offer much higher transaction rates.

Switching to the web server access pattern, which is all reads and no writes, changes the competitive landscape dramatically. The Intel drives are right in the thick of things, although the 320 Series is the slowest of the three. At least the new Intel drive hits a higher peak than a couple of the other SSDs.

Don’t forget about the lowly Spinpoint, either. The mechanical drive’s transaction rates are low enough that the line representing them is almost on the x-axis. Despite faring poorly versus some of the other SSDs, the Intel 320 Series absolutely destroys one of the best 7,200-RPM desktop drives on the market.

Power consumption

Moving your desktop’s OS and applications from a mechanical hard drive to an SSD is unlikely to produce substantial savings on your monthly electric bill. However, the low power consumption offered by solid-state storage is important for notebook users looking to squeeze as much run time as possible out of their systems’ batteries. We tested power consumption under load with IOMeter’s workstation access pattern chewing through 32 concurrent I/O requests. Idle power consumption was probed one minute after we stopped the IOMeter load.

The Intel 320 Series’ power consumption isn’t the lowest of the bunch, but the drive does draw a little less wattage than some of its rivals—especially if you consider watts per gigabyte. I’m a little surprised to see such low idle power draw out of the Intel 510 Series. The Vertex 3’s relatively high power consumption is also curious, although the OCZ drive is the fastest overall. SandForce tells us that the pre-production Vertex 3 we used for testing has higher power consumption than final hardware, which we should have in our hands soon.

If you’re interested in seeing how SSD power consumption compares to a wider range of mechanical hard drives, including notebook models, check out this page of our Scorpio Black 750GB review. The load numbers in that review come from a different IOMeter config, so they’re not directly comparable to the ones above.


The Intel 320 Series is, for all intents and purposes, a third-generation X25-M. I’m not sure I’d call it a next-generation SSD, though. This drive offers the latest and greatest in NAND technology, but it’s tied to a controller architecture that’s been around since Intel got into the SSD business some two and a half years ago. That controller’s 3Gbps Serial ATA interface hails from the previous generation, and so does the Intel 320 Series’ performance.

As a PC enthusiast who just spent the past couple of weeks testing 6Gbps drives like the OCZ Vertex 3, Crucial m4, and Intel’s own 510 Series, I find it difficult to get excited about an SSD that’s slower overall. Then I look at the performance offered by 7,200-RPM desktop drives and am reminded that moving to an SSD is a much bigger step up than shifting between contemporary models. You don’t need the fastest SSD on the market to enjoy the lightning-quick access times and superior overall responsiveness that solid-state storage can provide.

What folks considering a solid-state upgrade do need is lower prices. The Intel 320 Series’ use of 25-nm flash promises some relief on that front, even if its starting prices aren’t substantially lower than the going rate for 3Gbps drives like the Nova V128 and Agility 2. Forced to choose between those two drives and an Intel 320 Series, I’d probably opt for the 320 given its power-loss protection, XOR mojo, and solid all-around performance in desktop workloads. Intel’s reliability reputation doesn’t hurt, either.

If I could have my pick of any SSD to serve as the system drive in a new desktop, I might be tempted to pass over the Intel 320 Series and pay the premium for a 6Gbps model with superior overall performance. I say “might” because we don’t yet know how much the Vertex 3 and Crucial m4 will cost when they hit online retailers or whether Intel will maintain the 510 Series’ high prices when they do. I’m also hedging my bets as we prepare a more comprehensive suite of storage tests to tackle the latest wave of solid-state drives. By the time that suite is ready, we should have a better idea of how much all the various options will cost, allowing us to compare the value propositions of high-end SSDs and mid-range models like the Intel 320 Series.

Oh, and one more thing. Lest you think Intel’s use of a Marvell chip in the 510 Series and the old X25-M controller in the 320 foretells an end to in-house controller development, Intel tells us it “continues to develop controller technology and firmware for both consumer and enterprise SSDs.” A successor to the enterprise-oriented X25-E is in the works, and I wouldn’t be surprised to see it share new controller technology with a consumer model targeted at enthusiasts and power users.

Comments closed
    • indeego
    • 11 years ago

    Intel’s SSD forums are [url=<]crickets[/url<]. Proof positive in my mind.

    • indeego
    • 11 years ago

    Depends entirely on your requirements. The benefits of a SSD on system are extremely fast system response/boot and less hassle loading apps on said drive.

    However, if you rarely reboot/power down, you could see a better benefit putting apps/data on the ssd and boot from a mechanical. My preference is (by far) to make SSD’s boot, mechanical for backups of that data and large/infrequently accessed data. I don’t build desktop/laptop systems anymore with platters as boot.

    RAID is a massive topic in itself, recommend reading up on Wikipedia, it’s entirely dependent on your usage patterns.

    I will say this: consumer and “enthusiast” (motherboard) level raid is pathetic, I’ve seen it break numerous times, and I would not depend on it for the “R” in RAID if you can help it. Get a dedicated RAID controller card with proper onboard cache/battery if you do use it.

    • grl
    • 12 years ago

    So for those of us less learned, if I were to do a new build with this drive and a platter drive, would it be better to use this as a boot drive or some form of RAID? Not familiar with RAID and the pros and cons. Any info would be appreciated.

    • Firestarter
    • 12 years ago

    Testing and validation is the key to reliability, which is why Intel’s reputation carries weight. The process size influences expected usable life. I expect the 320 and 510 series to be equally reliable; both have proven controllers, as well as firmware that has passed Intel’s standards for release. The 320 has the added safeguard of those capacitors.

    • NeelyCam
    • 12 years ago

    Everyone’s trumpeting the reliability message. Man, I just don’t know…
    Do I have to pick 320 after all? 510? I kinda want to have the 6Gbps SATA capability, but do I really [i<]need[/i<] it? Are 510's more reliable because of 34nm vs. 25nm of 320?

    • indeego
    • 12 years ago

    It’s not pointless if/when people cite numbers in a larger installed force. I have ~40 SSDs installed, (about equal between Intel/Crucial/OCZ/Kingston and only one failure, A Vertex 2 on my home system after a month install.)

    At work I see about 1.5TB of host writes a year on average for our basic worker bees, easily within spec.

    – The Kingstons are slower but work fine,

    – The early OCZ Agilitys I have are slow and erratic (sometimes an app will take a minute to load, sometimes no delay at all(should have paid attention to the reviews.)

    – One of the Intel installs randomly complained about a read/write I/O error after 6 months install but no corrupt data and it never repeated again.

    • Hrunga Zmuda
    • 12 years ago

    I have a friend whose brother helps design these drives, and from what I’m hearing, some killer stuff is coming soon. Intel wants to stay on top, but it seems to me that a wide range of drives for different purposes and prices is pretty smart.

    • Chloiber
    • 12 years ago

    How about looking at the test? The Vertex 2 is comparable to the Agility 2. Probably even worse performance now, as they switched to 25nm NAND (unlinke other SF vendors). In the test, the 320 often beats the agility in REAL WORLD tests. Of course, you can keep looking at useless 4k Random benchmarks with a queue depth of 64, which tells you…well…absolutely nothing as a home user.

    And I didn’t even start talking about reliability.

    • NeelyCam
    • 12 years ago

    [quote<]"With a 120GB Vertex 2 selling for $200, why the hell would I buy a 320?" Because the 320 is better.[/quote<] How exactly...?

    • Chloiber
    • 12 years ago

    “With a 120GB Vertex 3 selling for $300, why the hell would I buy a 510?”
    Without having a proper test of the final Vertex 3, why the hell would I buy a Vertex 3?

    “With a 120GB Vertex 2 selling for $200, why the hell would I buy a 320?”
    Because the 320 is better.

    • NeelyCam
    • 12 years ago

    With a 120GB Vertex 3 selling for $300, why the hell would I buy a 510?
    With a 120GB Vertex 2 selling for $200, why the hell would I buy a 320?

    • NeelyCam
    • 12 years ago

    I had three deathstars blow up on me, and one seagate, over the span of 10 years or so. My three SSDs are running fine.

    Anecdotal evidence is [i<]so[/i<] pointless.

    • Chloiber
    • 12 years ago

    We all know about failure rates of HDDs. They exist long enough to have pretty good statistical numbers – and it’s definitely way above 1% 🙂

    • Chloiber
    • 12 years ago

    I am not sure whether this has been asked before – I just ask away:

    Is the data in the TR drivebench randomized? Is there any information about that? Would be relatively important whether the drives just write 0s or random data (especially with SF-based drives in the test).

    The 320 looks pretty nice. It’s exactly what I’d want for my Notebook or any “Office” computer. Cheap, way faster than any traditional HDD and reliable.
    At the moment, Intel’s SSDs are the only ones I really trust. SF as well as Marvell controllers are nice, but they are, in my opinion, just for funsies in a enthusiast desktop computer.

    • OneArmedScissor
    • 12 years ago

    [url<][/url<] Look at the tests from that one and on. It's pretty consistent and doesn't get any better. It's been a certainty for years now that no matter how many HDDs you pile up, it won't keep up with one decent SSD in most things. They're for mass storage and that's about it.

    • Bensam123
    • 12 years ago

    “When the drive detects imminent power loss, it disconnects power from the host and transfers data out of its buffers and into the NAND. All other activities are de-prioritized during this time, ensuring that the drive doesn’t lose any data when the power cuts out. This particular feature should appeal to the enterprise customers who have apparently become quite fond of the X25-M. Intel says its consumer-grade SSDs have become more popular among enterprise clients than the X25-E it designed specifically for the market.”

    This. Particularly why isn’t something like this implemented with RAM as the primary storage media and flash being the backup one? Power shuts off and RAM dumps to flash. This would make things a heck of a lot faster (that would force a PCI-E card) and allow for large write caches, which are generally taboo since most people don’t have a UPS and that’s almost definite data loss on a power outage if a write cache is being used.

    This feature has been a long time coming though, I’m surprised more people aren’t excited about it.

    • Firestarter
    • 12 years ago

    They’d still look awful. RAID doesn’t not solve the biggest problem that HDDs have, which is seeking. RAID 5 is pretty slow anyway, and RAID 0 only helps to improve sequential access at the cost of decreasing reliability.

    In short, the TR staff would be wasting their time.

    • thermistor
    • 12 years ago

    OK, so what would a set of 2-4 7200 RPM drives in a performance RAID setup like RAID 0, or maybe 5, using an onboard Intel ICH(X)R controller look like compared to the Spinpoint and all the HDD splendor?

    I’m curious if any of the benchies move move substantially and make mechanical drives look less awful.

    This would be an OK comparison due to the fairly large number of shipping parts that have a built-in RAID option, whether or not the user is taking advantage of it.

    • Waco
    • 12 years ago

    Do you really have to troll incessantly on every website you’re on? It’s not like you could be doing this without realizing it…perhaps you love the beat downs you’re getting?

    • Arclight
    • 12 years ago

    As soon as a 128Gb SSD costs less than 100$ i’m buying it, untill then they still are too expesive for the capacity. That being said i’m hating my new WD Caviar Black, it’s the loudest compenent in my PC.

    • equivicus
    • 12 years ago

    Benchmarks? Did you consider RAID 60? Have you tried them with shared storage?

    • Firestarter
    • 12 years ago

    SATA is half-duplex as far as I can tell (SAS is full-duplex). As such, the theoretical maximum copy speed from a SATA II drive to the same drive would be ~150MB/s, and ~300MB/s for a SATA III drive. That the Intel 510 series SSDs can manage more than ~150MB/s real world copy speed does indeed say enough about the relevance of a 6Gbit/s.

    • Mr Bill
    • 12 years ago

    The 160GB is twice the capacity and a faster writer than the 80GB currently in my laptop for just about the same price I originally paid. I’m very tempted.

    • OneArmedScissor
    • 12 years ago

    Only the Intel 510 broke even 200MB/s in an actual copy test, and just in one of them. I think that says enough about the relevance of 6gbps vs 3gbps.

    It’s too late for “real world” 3gbps tests, even if 6gbps itself doesn’t matter. If you only have a 3gbps controller, then your computer is probably over a year old. Going that far back, how do you just choose one controller to judge by? They’d have to test like five. Even laptops did not have a standard platform at that point and were a mix of various Core 2, Core iX, and AMD 700 series southbridges, which were known to be inefficient.

    It would mislead more people than it would help because it would just be limiting all of the drives tested to one obsolete and uncommon controller’s particular weaknesses.

    • esterhasz
    • 12 years ago

    A little real-world investigation into the question whether it makes any sense at all to get one of the new 6G drives if you only have a 3G controller would be interesting though…

    • OneArmedScissor
    • 12 years ago

    Eh…most laptops also don’t have a SSD at all, much less one of these models in particular. All current Intel and AMD laptops should support SATA 6gbps, though.

    I don’t see what that would matter, anyways. Even the synthetic streaming test did not go too fast for 3gbps. It was down in the 100MB/s range on their actual copy tests.

    • Salamok
    • 12 years ago

    Great Info, can you now rerun all the tests based on a SATA 3Gbps controller, considering most laptops currently do not support SATA 6Gbps.

    • esterhasz
    • 12 years ago

    Good read! And thanks for including the link to the article on HW failure rates, really interesting, especially if you compare Intel’s rates to 2TB hard drives.

    I kind of regret that there is no 240GB model – my current 160GB G2 is just a wee little bit too small but doubling to 300GB is kind of heavy… well, can’t have it all…

    • flip-mode
    • 12 years ago

    [quote=”Geoff”<] Solid-state drive prices may not be dropping at a pace fast enough to satisfy folks stubbornly waiting for them to hit $1/GB, but incremental progress is being made.[/quote<] That about sums it up. Being patient isn't easy. Still, we're at essentially $2 per gig. $1 per gig should be here in another 2 years, I hope. I think I may actually grab up a 40 gig drive real soon here for my Linux drive. But Windows + apps + games still needs larger than that. Boo.

    • flip-mode
    • 12 years ago

    That’s nothing. Out of 50 some mechanical drives I have in operation for between 4 and 7 years now, I haven’t had a single failure. Not one.

    • GrimDanfango
    • 12 years ago

    Sandy Bridge didn’t fail, there’s absolutely nothing wrong with Sandy Bridge silicon.
    The 67 series motherboard chipset had a minor design flaw, which might cause SATA connections to degrade over time on a small minority of motherboards. I’ve known a lot more glaring design flaws from various manufacturers over the years that were essentially ignored, and it was down to users to either chase refunds or just stick with it. Intel ran a full recall and refunded/replaced all affected chipsets. I’d say their reputation for reliability is still intact – they’re the only manufacturer I know of that would suspend and recall an entire product line over a small design defect.

    • Firestarter
    • 12 years ago

    What I am most surprised by is not the (lack of) performance of these drives, but by the reception by us enthusiasts. From what I’ve seen here on TR and on Anand, Intel should be dead in the water with no way to shovel these dead 300 and 500 series drives out the door except to dump them at $1/GB, just because they aren’t at the bleeding edge of performance right now.

    If I were to upgrade 100 laptops or workstations right now with SSDs, these would be the ones I’d get.

    • TravelMug
    • 12 years ago

    That’s some great info, thanks!

    • Anomymous Gerbil
    • 12 years ago

    $/GB isn’t very important when the absolute price is so low for some smaller-capacity SSDs, given the performance benefits. Your users will love you, and the CFO won’t complain (too much). Just do it.

    • Vaughn
    • 12 years ago

    This is about what I expected but with faster writes.

    I think a firmware update or two should even out the couple test where the G2 drives win. It was known that these were gonna be SATA II only drivers for quite a while so i don’t understand the shock and awe from some of the posters.

    If you have Sata 6gbps this obviously isn’t the drive for you the 510 is.

    Now the prices…..
    at 160GB and down they are great.

    However 300GB and the 600GB are quite the slap in the face with those prices.

    If in a few months I can get the 300GB drive for say $450 I would jump on it, that would allow me to move my current 160GB g2 into a laptop or netbook still undecided about the HP dm1z vs the Leveno x120e 🙂

    • cheddarlump
    • 12 years ago

    What’s there best spinning competition? 6gb/s 15k sas? Ever priced those out?

    • cheddarlump
    • 12 years ago

    Intel makes mistakes as others do, and I’m not a fanboy. I read the whitepapers to learn of intel SSD raid card support, and they drop out correctly on testing. I have tried many different vendors in my very own testing, and these work better than all the others I’ve tried. That’s all. I was merely pointing out my excitement that I could now use a proven (to me) controller’ed SSD with almost 5 times the capacity of what I’ve been using in the past.

    • cheddarlump
    • 12 years ago

    They’re DL360G6’s running the included HP raid card (SmartArray p410i). Dual Nehalem xeon 5540’s, 48GB ram. Raid card has 1GB BBWC, and is set to allow write-back cache, and 50/50 read/write.

    I run 2 G2-80gb drives in raid 1 for server 2008r2 enterprise, and 5 VM’s on 8 g2-160’s in raid 10. These are SQL vm’s, web app vm’s, mail servers, you name it.

    I can’t slow them down. For those doing the same, just make sure you set VM data drives to SCSI type in Hyper-V for the NCQ/TCQ passthrough.

    Currently have 4 such boxes, and will be building more. Oldest is now 9 months old.

    I also have some dell 1950’s running VM’s off a md3000i san box, and even with 15k sas drives in there, it’s slow compared to the SSD’s. I don’t care if the intel’s aren’t at the top of the chart, the HP controller recognizes them as SSD’s, and reads SMART info appropriately. Not one drive failed yet, that’s 32 g2-160s in full time abuse for months and months.. If they do fail, I have spares, and they’re raid 10.

    I use a whole bunch of other ssd’s for the workstations around here, indilinx, marvel, samsumg, Jmicron(new ones), and sandforce, and have had several failures already, but none on the servers.

    • Sunburn74
    • 12 years ago

    just raid0 them into one big drive. the reward far outweighs the risk especially if you keep regular backups on a convential hard drive

    • Sunburn74
    • 12 years ago

    The 120gb 320 ssd in this article is less than half the price of the first 120gb x25m.

    • Kurotetsu
    • 12 years ago

    And that’s exactly why Intel will never make that miraculous price drop that will instantly place SSDs in line with current HDDs. I’m sure it’ll happen, but it’ll be a gradual process over at least 2-3 years (yes, I pulled that number out of my rectum).

    • Firestarter
    • 12 years ago

    I’m pretty sure they will.

    • NeelyCam
    • 12 years ago

    Fanboyism? Seriously?

    You’re so confused that this isn’t funny anymore.

    • NeelyCam
    • 12 years ago

    They kind of have to reduce the prices… otherwise these won’t sell

    • NeelyCam
    • 12 years ago

    I think 510 is the stopgap, but yeah – they was probably surprised by the SF performance.. G3 was probably their plan all along, and it was just too late to change the plan when it became clear that’s it’s not that competitive.

    I’m fine with it – the performance is still good enough, and hopefully the weak competitive position will force them to cut the prices. I think pretty much any SSD is ‘fast enough’, but price is the big issue.

    • HisDivineShadow
    • 12 years ago

    Tick-tock already happened.

    G1 tick.
    G2 tock.

    What is this? G3 ti-ock?

    I think this part is their stopgap and not at all what they intended to release last year. They were caught flatfooted by the sheer performance of Marvell and Sandforce’s parts, so they made the best of what they had. Their best part with the best firmware they could muster on newer flash as the mid-range and licensing the other guy’s solution for temporary use as the high end on proven and tested older flash that they have lying around in their basement. Does anyone believe they worked for years to release a firmware updated version of the X25-M G2? Of course not.

    I imagine they’re retooling and rebuilding the chipset from last year to try and make it better than SF’s greatest. Just like with Larabee, though, they’ve fallen behind and every time they’re about to catch up in performance, the other guys’ll just ship another chipset to put them back down again.

    It won’t be long before they’re waving the white flag and trying to buy Sandforce, if OCZ doesn’t snatch ’em up, too.

    • bcronce
    • 12 years ago

    You have to wait for 25nm to mature to where the 34nm is right now before you can star directly comparing.

    Also, 34nm had ~10k write cycles and 25nm has ~3000 write cycles. they burn out about 3 times faster, so more storage must be dedicated to wear leveling/XOR/etc.

    • bcronce
    • 12 years ago

    Engineering mix-up != failure rate

    Intel has a very good history of reliable products. Yes, there were a fix mistakes along the way, but All major companies have had them, and many times much worse.

    Look at the IBM “Death Star”. It went from being the worse drive on the market, then bought out and is now one of the most reliable drives.

    AMD, had that TBL bug that caused their chips to run 30% slower. nVidia had exploding video cards. ATI had green screens.

    Aww, Intel had a problem with a *single* transistor and was fixed ASAP.

    • Farting Bob
    • 12 years ago

    Thats not Intel’s style though. They set a price, and if youre lucky they reduce it 5-10% 6-12 months down the line. They would rather keep products at roughly the starting price and just replace it with a better product at the same price a year or 2 later, this is especially true for anything in the low and mid range.

    • Chrispy_
    • 12 years ago

    I smell tick-tock:

    New architecture and 25nm flash at the same time would probably have been risky.
    New flash on old architecture, followed by new architecture gets us there just fine, but without giving Intel’s bean-counters the sweats.

    • jensend
    • 12 years ago

    Nothing earth-shattering about its performance, but the poorly-named but apparently otherwise well-thought-out data redundancy/protection scheme, the power loss protection (first time in a consumer drive?), and the general indications that 25nm’s reliability problems might not be as bad as some thought (and should improve as the process matures) are good news for the SSD market as a whole.

    • potatochobit
    • 12 years ago

    maybe you are not adding enough salt?

    Last time my French retailer told me intel’s IGP was the best on the market even beating discrete GPUs in 3DMark Vantage!

    anyway, I am not arguing the reliability card here. I am sure XOR helps, it’s still too early to be making any claims that intel is ‘more reliable’ than other companies.

    oh, I figured out a name for you, you can be bob.

    • grantmeaname
    • 12 years ago

    “[b<][u<]Among the 50,000 drives pressed into service by Intel's IT department, the annual failure rate is claimed to be 0.61%. Intel also quotes a 0.26% failure rate for the over 100,000 X25-Ms in use by ZT Systems, an enterprise customer running the drives in a datacenter environment. For the over 800,000 SSDs that Intel has shipped into the distribution channel, the failure rate is said to be only 0.4%. Since these figures come from Intel, we'll need to add salt—but perhaps only a sprinkle. Earlier this year, a French retailer released reliability stats on hard drive failures. Intel SSDs had a failure rate of 0.59%, while the solid-state competition from Corsair, Crucial, Kingston, and OCZ ranged from 2.17-2.93%.[/b<][/u<]"

    • potatochobit
    • 12 years ago

    Really? because in the last article I read they also suggested sandy bridge would never fail

    as I told the last guy above you, your fanboyism is worthless, it may be ok in your little world to pull numbers out of your rear, but if you want to claim raid is better on intel drives then you need to show some numbers.

    • grantmeaname
    • 12 years ago

    Prices may be reduced after launch.

    • grantmeaname
    • 12 years ago

    The article you’re commenting in suggest that competitors’ drives fail an order of magnitude more often. Thanks for playing.

    • potatochobit
    • 12 years ago

    that’s right, because sandy bridge has a really low failure rate
    I mean intel’s reputation is rock solid, it’s ASUS’ fault people had no computer for over a month
    yes, rock solid, like a rock.

    I’ll put the fanboyism aside, but I have not heard anything to suggest that intel drives work better with a raid setup than other branded drives, do you have any links to back this claim up?

    • StashTheVampede
    • 12 years ago

    “Next” PC plan, 2x SSDs! At least a 40GB unit for Windows7, then junction the \users\ folder to the d:\ drive with another SSD around the 80GBish range. Steam will go right onto my desktop.

    • cheddarlump
    • 12 years ago

    This is great news! Higher capacity with rock-solid reliability from intel.

    I use the G2-160s (8 of them in a raid 10) for my virtualization hosts on HP and Dell machines, and have yet to have a single failure in them. The performance from them is better than a $40k FC SAN block, and they just work so damn well with the raid cards, you think they’re nice as is? Add 1GB cache to the mix.
    Effing phenomenal.

    There may be slightly faster SSD’s out there, but I’ll take intel’s reputation and low failure rate any day of the week.

    Looks like my neweggbusiness account is about to be abused for the higher capacity drives.

    • mmp121
    • 12 years ago

    So, going from 34nm to 25nm using a tweaked 1st/2nd gen in-house controller saves us ~ $10-$20 on the ‘low end’, with a maximum savings of $100 on the ‘high side’.

    Weaksauce indeed.

    I don’t see SSD’s breaking the $1/GB floor any time soon. I was hoping for a 50% reduction in prices when 25nm came out.

    I was hoping pricing would be more like:

    40GB / $60
    80GB / $100
    120GB / $140
    160GB / $180
    300GB / $320
    600GB / $600

    Now that would be WAY better.

    • Delphis
    • 12 years ago

    I’m all for ‘fast enough’ SSDs. As the article mentions, even just going to any SSD is a leap in performance over spinning platters. It’s the $/GB that gets you. I would love to upgrade all my machines at work to using SSDs but for now it’s just not feasible. I don’t need large capacity SSDs either. If you have a central file server then it’s okay to have a 30 or 40GB system drive and that’s it.

    Cheaper, fast-enough and some models with modest capacity and they’ll sell like crazy for organizations that want to get more life out of their workstations and save money into the bargain.

    • Kurotetsu
    • 12 years ago

    [quote=”Bauxite”<]So it all really boils down to whether or not these end up significantly cheaper.[/quote<] They won't be.

    • Bauxite
    • 12 years ago

    So it all really boils down to whether or not these end up significantly cheaper.

    If they do, its a no-brainer buy for most people just trying to get away from slow spinning platters as much as possible and get the ultra responsiveness we all love.

    If not, then you might as well get a 6gbps drive if you’re opening your wallet extra wide.

    I will say right *now* (based on actual, in-stock, shipping prices) it seems the C300 $/gb ratio at the high end is one of the better ones I’ve seen.

    Side note: its nice that these are still coming in 7mm high form factors for some of the light/thin laptops. (if you remove the spacer, choice is good) I don’t get all the 9.5mm 2.5″ SSDs, if you open them up there is usually plenty of room.

    • 5150
    • 12 years ago


    • NeelyCam
    • 12 years ago


    So, they are a bit cheaper than the current stuff, but $1/GB takes another two years or so..

Pin It on Pinterest

Share This

Share this post with your friends!