Asus’ P8Z77-I Deluxe Mini-ITX motherboard reviewed

Last weekend, Demetrious Johnson and John Dodson fought for the UFC flyweight title live on Fox. These 125-pounders weigh less than I did in elementary school, and their prime-time bout was kind of a big deal. Most of the attention in mixed martial arts and other combat sports has traditionally been focused on the heavier weight classes, which involve more imposing athletes and, thanks to the laws of physics, more devastating knockouts.

Rabid fanboys excepted, the competition in the motherboard world isn’t nearly as violent. There is, however, a similar focus on size—specifically, on larger form factors like ATX. Mini-ITX mobos are only beginning to get their due.

Just a few years have passed since the 6.7″ x 6.7″ form factor outgrew the low-power processors and lame enclosures of its youth. In that time, Mini-ITX systems have evolved into credible competition for their ATX counterparts, minus a few expansion slots, of course. Some boards, like Asus’ P8Z77-I Deluxe, are even equipped to satisfy the needs of demanding overclockers and enthusiasts. This miniature monster has an Ivy Bridge socket fed by a 10-phase riser card, an auxiliary controller with extra USB 3.0 ports, wireless connectivity out the wazoo, and loads of thoughtful little extras.

Best of all, you can shove it into a chassis the size of a shoebox. We couldn’t resist the urge to check out the board for ourselves.

True to its name, the P8Z77-I Deluxe is based on Intel’s Z77 Express platform hub. This high-end chipset is responsible for much of the motherboard’s I/O and includes the full suite of enthusiast-friendly features available in Intel’s Ivy Bridge platform. SSD caching via Intel’s Smart Response Technology? Check. Support for Lucid’s Virtu software? Check. Unrestricted CPU and memory overclocking? Check.

Although overclockers have traditionally shied away from Mini-ITX motherboards, Asus hopes they’ll give the Deluxe a second look. I certainly did a double-take the first time I saw the board. The feature that caught my eye was the riser card that sits north of the CPU socket. This vertical circuit board hosts an 8+2 power phase configuration that should offer more stable power delivery than less exotic solutions. Arranging the VRMs on a riser is a clever way to get around the form factor’s limited board real estate, but it does create some complications.

The back of the riser features a rubber spacer to prevent the card’s components and exposed solder points from making contact with the walls of an enclosure. This bumper just barely extends beyond the boundary of the motherboard, so it shouldn’t limit case compatibility. The riser does crowd the area around the fan headers, though. It also effectively walls off one side of the CPU socket, leaving less room for larger CPU coolers.

Given the cramped nature of Mini-ITX motherboards and cases, the position of certain components is particularly important. Since we can’t make sure there’s room for every combination of cooler, memory, graphics card, and case, we’ve opted to take a few key measurements instead. The image below details the distances between the socket, various components, and the edges of the board.

Don’t worry too much about the 30-mm gap between the socket and the vertical battery mount; the battery is only 22 mm tall, so it won’t get in the way. However, the VRM riser is much larger, at 43 mm tall, and it’s still relatively close to the socket. The DIMM slots are even closer, so you may need to avoid taller memory modules, depending on your choice of CPU cooler.

Apart from the riser and battery, all of the onboard components keep an incredibly low profile. The chipset heatsink is no taller than the SATA ports, which are admittedly a little awkward to access in a fully loaded system. Good luck finding a Mini-ITX motherboard without similar compromises, though. You can’t put this many features on a board this small without making a few concessions.

Like pretty much every Mini-ITX motherboard we’ve seen, the P8Z77-I Deluxe has one PCI Express x16 slot and dual memory slots—enough expansion capacity to slap in a powerful graphics card and plenty of RAM. The four internal SATA ports are complemented by a pair of eSATA connectors in the rear cluster, and USB 3.0 ports abound. In addition to the four USB 3.0 ports provided by the Z77 platform hub (two of which are tied to an internal header), two more are included via an auxiliary ASMedia controller.

The I/O panel is peppered with display outputs for Ivy’s integrated graphics and connectors for the included Wi-Fi antennas. One of my favorite elements is the subtle button panel over to the right. The button on the bottom allows the CMOS to be reset without cracking open the case. Pressing it is much easier than trying to get at the onboard jumper that performs the same task. The top button controls USB BIOS Flashback, a feature that allows the firmware to be flashed using only a USB stick and a power supply—no CPU or memory required.

These buttons don’t leave Asus enough room to provide a full array of analog audio outputs, but the board does provide a digital S/PDIF output. Onboard audio is particularly important for Mini-ITX motherboards because they lack sufficient expansion slots to combine discrete graphics and sound cards in the same system. The Deluxe’s implementation lives up to the name, supporting both surround-sound virtualization for stereo devices and real-time DTS Interactive encoding for six-channel digital output.

Motherboard accessories are rarely exciting, but they can be very valuable. Asus has included two little extras that probably cost only a few cents but definitely smooth out the system building process. The first is a wiring harness for the front-panel connectors, which makes hooking up a case’s power button, reset switch, and activity LEDs much easier. The second is a simple strip of foam on the I/O shield. This little perk removes the need for pesky metal tabs that can get caught up in the ports when you slide the motherboard into a case. It’s the little things that count.

Speaking of little touches, it’s worth noting that the Deluxe’s dual Wi-Fi antennas have magnetic stands and sit at the end of 32″ wires. You should have no problem positioning the antennas for maximum signal strength regardless of where you tuck the system.

Tweaking options

Motherboard hardware is important, but it’s only one part of the overall experience. The accompanying firmware and software interfaces govern how users interact with the board, whether it’s to overclock the CPU, adjust fan speeds, or modify the multitude of other system variables made available by modern mobos. Let’s start with the firmware, which offers a more extensive array of tweaking options than what you get in Windows.

Asus has devoted a lot of development resources to crafting the core firmware shared by all its recent motherboards, and the effort shows. The interface is slick, responsive, and well-organized. Thanks to the new UEFI standard, the interface has full mouse support—wheel included—and pretty decent graphics, all things considered.

The screenshot above depicts the default EZ Mode interface, which is really geared toward newbies. There isn’t much you can do from this screen beyond changing the order of boot devices and switching between pre-baked configuration profiles. However, the shortcut button in the bottom left corner of the screen provides quick access to the most commonly used elements of the Advanced Mode, which is loaded with options and organized more like a traditional BIOS. If you prefer the old-school look, the firmware can be set to skip the EZ Mode and jump directly to the advanced interface.

I really didn’t want to have to go off on a rant here, but this is important. The P8Z77-I Deluxe employs a “MultiCore Enhancement” feature that’s enabled by default in the firmware revision currently available to the public. When the memory speed is changed manually, this “enhancement” takes the liberty of using the CPU’s maximum single-core CPU multiplier for all-core loads.

Admittedly, the difference isn’t huge; on a Core i7-3770K, the peak Turbo speed with quad-core loads jumps from 3.7 to 3.9GHz. While this practice may not rise to Lance Armstrong levels of cheating, it’s definitely doping. Intel defines the behavior as overclocking. The feature also violates good practices for motherboard firmware. Modifying one system variable should never cause a change in a completely unrelated setting. Also, a motherboard should never overclock a user’s system without their explicit consent. The firmware doesn’t even provide a clear indication that CPU clocks speeds are being increased.

Asus has been surreptitiously “enhancing” CPU multipliers in various ways since the Sandy Bridge era, and we’ve had numerous discussions with the company about our reservations. This time around, that discussion produced a new beta firmware that provides clearer messaging about what the MultiCore Enhancement actually does. More importantly, the new firmware disables the feature by default. We hope the changes stick—and that they’re applied across Asus’ entire motherboard line.

If you’d prefer to take an active role in overclocking, the firmware has no shortage of options. The OC Tuner feature lets the board overclock the CPU automatically—this time with your permission—and clock speeds, multipliers, and voltages can all be tuned manually. I’m particularly fond of the ability to choose between defining a specific CPU voltage and applying an offset that increases (or decreases) the default by a given amount. Most of the values can be keyed in directly, which is much more convenient than scrolling through lists of pre-defined settings.

Along with a wealth of performance tuning variables, the firmware provides a nice array of fan options. Temperature-based speed control is available for the CPU and system fans, and users can set temperature and speed limits manually. If you’re not completely obsessive about tweaking your system’s acoustic profile, the Silent, Standard, and Turbo presets should suffice.

Want even more control over fan speeds? Install Asus’ AI Suite software for Windows, which includes an excellent Fan Xpert app that allows users to drag three points along the fan speed curve for both the CPU and system headers. You can even run a quick test that logs the rotational speed as the fan ramps up from idle to full blast.

AI Suite is made up of numerous components that can all be installed individually, so it’s easy to configure the software to meet your needs. As in the firmware, the graphical interface feels refined and responsive. The GUI has an attractive theme. All of the components look like they belong together, and the controls are intuitive. I’ve used an awful lot of motherboard software in the decade or so that I’ve been doing these kinds of reviews, and AI Suite is easily the best of the lot.

The TurboV EVO component of AI Suite serves up an auto-overclocking mechanism for the CPU in addition to manual controls if you want to get your hands dirty. The selection of options isn’t as diverse as what’s available in the firmware, but the only feature I really miss is control over the memory frequency. All the other important stuff, including per-core multipliers and various voltages, can be adjusted by the TurboV software. There’s also a separate AI Suite component that unlocks access to the power circuitry, allowing users to tweak VRM variables like the load-line calibration and current limits.


AI Suite is so good that we used it for the bulk of our overclocking tests. We didn’t hold back, either. Our Core i7-3770K CPU was strapped to a dual-fan Corsair H80 water cooler, and we added one of Asus’ hot-clocked Radeon HD 7970 graphics cards for good measure. Those kinds of components are unlikely to find their way into typical Mini-ITX builds, but we wanted to see how the board held up when pushed to the limit. This is a high-end Deluxe model, after all.

First, we gave auto-tuning a shot. This mechanism ramps up clock speeds while testing stability. If the system crashes, the auto-tuner makes adjustments and tries again. Within just a few minutes, the board settled on a CPU multiplier of 48X, a base clock of 103MHz, and a CPU voltage of 1.35V. The resulting 4.9GHz CPU clock is a full gigahertz higher than stock, and the system was perfectly stable under a combined CPU and GPU load.

As it turns out, the auto-tuner did a good job of finding the limits of our CPU. When we tried our hand at manual overclocking, we managed to get the system stable at 4.9GHz (this time with a 49X multiplier and the default 100MHz base clock) but ran into application and blue-screen errors at 5GHz. Tweaking the voltages and load-line calibration settings did make the system more stable, but it also increased CPU temperatures to the point that the chip started throttling under load. 4.9GHz is still an impressive achievement, and it matches the highest clock speed this particular CPU has reached on full-sized ATX motherboards.

Performance highlights

Motherboards are inherently complex, and a fair amount of testing is required before we can comfortably render a recommendation. There are lots of little pieces and plenty of things that can go wrong. That said, boards based on the same platform tend to offer near-identical performance. The CPU and GPU are largely responsible for defining a system’s performance in applications and games, and the platform hub handles most of the I/O. The only exception tends to be the use of third-party peripheral controllers, but even then, different motherboards often use the very same chips, with predictable results.

Instead of making you scroll through a bunch of graphs and tables, we’ve cherry-picked a handful of results to put the P8Z77-I Deluxe’s performance in perspective. You can still peruse the full suite of results on the following pages, but don’t expect performance differences of more than a few percent. Here are a couple of examples of what I’m talking about:

When paired with the same CPU and memory, there’s really no meaningful difference in application performance between the P8Z77-I Deluxe and comparable Z77-based Mini-ITX boards from ASRock and Zotac. We saw similarly, er, similar results throughout our test suite.

That said, we did measure bigger performance gaps when probing cold boot times. We tested with and without each board’s “fast boot” options enabled, but we didn’t go for the ultra-fast options that prevent users from getting into the firmware using a keyboard shortcut. The boards that offer a configurable window for firmware access, including the P8Z77-I Deluxe, were all set to a one-second delay.

The Deluxe is a little slower than the other boards when fast boot is enabled. We’re only talking about differences of a few seconds in a hand-timed test, but I’m surprised that enabling the basic fast boot option doesn’t speed up the Asus board at all.

We also test the performance of on-board peripherals like Ethernet, Serial ATA, and USB. The P8Z77-I Deluxe is mostly even with its peers on those fronts, but Asus has an ace up its sleeve: USB Boost software that can accelerate performance with several kinds of devices. Standard USB devices have access to a special Turbo mode, and those that support the SCSI-like USAP protocol can benefit from a special USAP mode tied to the auxiliary ASMedia controller. The Intel controller also supports USAP, but a special boost mode isn’t needed in Windows 8, whose drivers natively support the feature.

Since we used Windows 8 and a USAP-compatible Thermaltake docking station for testing, we only played with the boost mode for the ASMedia controller. Here are some results from TR RoboBench, a new in-house test that uses Windows’ multi-threaded robocopy command to copy two file sets: one made up of large movie files and another with a mix of movies, MP3s, images, and documents.

There are two important things to note. The Intel USB 3.0 controller shared by all the boards offers better performance, by default, than the ASMedia chip used by the Asus and ASRock mobos. However, the ASMedia chip gets a lot faster when USB Boost’s USAP mode is enabled. This mode performs particularly well with random I/O, as you’ll see if you dig deeper into our test results later in the review, but we think these sequential transfers—and particularly several at once—offer the more realistic usage scenario for USB storage.

Power consumption

Like performance, motherboard power consumption tends to be pretty consistent from one board to the next, at least within a given form factor. Differences of only a few watts aren’t that meaningful for system cooling, and they’re pretty much irrelevant as far as your electricity bill is concerned. Our power consumption tests do tell us something interesting about the P8Z77-I Deluxe and its fancy VRM riser, though.

Compared to the Zotac board, the Asus has higher power consumption at idle and while playing 1080p YouTube video. When under a more strenuous load that maxes out the CPU and GPU, the P8Z77-I Deluxe has the lowest power consumption of the lot. As expected, the stakes are low in terms of wattage, but the Deluxe seems to have more efficient power delivery when the going gets tough. That riser card isn’t just for show.

So ends our look at the P8Z77-I Deluxe’s crucial performance characteristics. If you’d like to see the rest of our test results and get into the nitty gritty of how the systems were configured, continue to the next page. Otherwise, you can skip ahead to the conclusion for our final thoughts on the board.

Detailed specifications

Although we’ve covered the highlights already, here’s a full rundown of the P8Z77-I Deluxe’s specifications and firmware-based overclocking and fan control options.

Platform Intel Z77 Express, socket LGA1155
DIMM slots 2 DDR3, 16GB max
Expansion slots 1 PCIe 3.0 x16
Storage I/O 2 SATA RAID 6Gbps


Audio 8-channel HD via Realtek ALC898
Wireless Dual-band 2.4/5GHz 802.11n Wi-Fi via Broadcom DW1530

Bluetooth 4.0

Ports 1 DisplayPort



4 USB 3.0

2 USB 3.0 w/ 2 headers via ASMedia ASM1042

4 USB 2.0 w/ 4 headers

1 Gigabit Ethernet via Intel 82579V

2 eSATA RAID 3Gbps

1 analog front out

1 analog bass/center out/line in

1 analog rear out/line in

1 digital S/PDIF output

Overclocking Per-core CPU multiplier: 36-63X

Base clock: 80-300MHz

GPU clock: 1150-3000MHz

DRAM clock: 800-3200MHz

CPU  voltage: 0.8-1.99V

DRAM voltage: 1.2-2.135V

VCCSA voltage: 0.61-1.56V

PCH voltage: 1.05-1.4V

PLL voltage: 1.8-1.9V

Fan control CPU: min/max temperature, fan speed

System: max temperature, min/max fan speed

The mix of ports, slots, and onboard peripherals is pretty typical of Mini-ITX boards based on this platform. Most Z77 midgets feature integrated wireless connectivity, and all the ones we’ve seen have some degree of firmware-based overclocking and fan control support.

We used the following system configurations for testing. Expect full reviews of the ASRock and Zotac boards soon. We also have a Gigabyte model in-house and an MSI on the way.

Processor Intel Core i7-3700K 3.5GHz
Motherboard Asus P8Z77-I Deluxe ASRock Z77E-ITX Zotac Z77-ITX WiFi
Bios revision 0801 1.70 229
Platform hub Intel Z77 Express Intel Z77 Express Intel Z77 Express
Chipset drivers Chipset:






Audio Realtek ALC898 Realtek ALC898 Realtek ALC892
Memory size 8GB (2 DIMMs)
Memory type Corsair Vengeance DDR3 SDRAM at 1600MHz
Memory timings 9-9-9-24-1T
Graphics Intel HD Graphics 4000 with drivers
Hard drive Corsair Force Series GT 120GB

Samsung 830 Series 256GB

OCZ RevoDrive 3 X2 240GB

Power Supply Corsair AX850 850W
OS Microsoft Windows 8 Enterprise x64

Thanks to Intel, Corsair, Samsung, OCZ, and Asus for providing the hardware used in our test systems. We should also thank the motherboard makers for providing their products for review.

We used the following versions of our test applications:

Some further notes on our test methods:

  • DiRT Showdown was tested with medium detail settings and a 1366×768 display resolution. We used Fraps to log a 60-second snippet of gameplay from the demo’s first race. To offset the fact that our gameplay sequence can’t be repeated exactly, we ran this test five times on each system.
  • Power consumption was measured at the wall socket for the complete system, sans monitor and speakers, using a Watts Up Pro power meter. Our video playback load used this 1080p YouTube trailer for the movie Looper. The full-load test combined AIDA64’s CPU stress test with the Unigine Heaven DirectX 11 demo running in a 1280×1024 window.
  • The Force GT 120GB SSD was used as the system drive for all tests. The Samsung 830 Series 256GB was connected as secondary storage to test Serial ATA and USB performance, the latter through a USAP-compatible Thermaltake BlacX 5G docking station. With RoboBench, we used the Samsung SSD as the source drive and the OCZ RevoDrive 3 X2 240GB as the destination for the read speed tests. Those roles were reversed for RoboBench’s write speed tests.
    The Samsung/OCZ tag team also powered our Ethernet transfer tests. The RevoDrive served as the source and destination on the host system, while the 830 Series SSD performed those duties on the remote machine. That remote rig was based on an Asus P8P67 Deluxe motherboard with an Intel 82579 Gigabit Ethernet controller. The two systems were connected via a single Cat 6 Ethernet cable.

    The Samsung and OCZ SSDs were secure-erased before each test that involved them. The Corsair drive was also wiped before we loaded our system image.

  • Analog audio signal quality was tested using RMAA’s “loopback” test, which pipes front-channel output through the board’s line input. We tested with the boards idling and with a combined load consisting of AIDA64’s CPU stress test, the Unigine Heaven demo, and a CrystalDiskMark 4KB random I/O test running on the Samsung SSD attached via USB 3.0.

The tests and methods we employ are usually publicly available and reproducible. All tests were run at least three times, and we reported the median of those results. If you have questions about our methods, hit our forums to talk with us about them.

Memory bandwidth

Since all our systems used the same 1600MHz Corsair DIMMs with identical timings, don’t expect meaningful differences in memory bandwidth.


SunSpider JavaScript performance

We tested the latest SunSpider release, version 0.9.1, in a special build of Chromium (the open-source version of Chrome) that we keep around for such purposes.

TrueCrypt disk encryption

TrueCrypt’s AES algorithm benefits from acceleration via Intel’s AES-NI instructions, which are supported by our Ivy Bridge CPU. We’ve also included results for another algorithm, Twofish, that isn’t accelerated via dedicated instructions.

7-Zip file compression and decompression

The figures below were extracted from 7-Zip’s built-in benchmark.

Video encoding

x264 HD benchmark

This benchmark tests one of the most popular H.264 video encoders, the open-source x264. The results come in two parts, one for each of the two passes the encoder makes through the video file. We’ve chosen to show them separately, since that’s typically how the results are reported in the public database of results for this benchmark.


DiRT Showdown

We busted out our Inside the second methods to testing gaming performance. While we aren’t showing all of our fancy latency graphs, we have included results for FPS and the 99th percentile frame time.

Boot time

Here, we measured the boot time after a full system shutdown. We used a stopwatch to time each test and stopped the clock when the Windows 8 Start screen finished loading.

With the exception of this test, there’s little difference between the performance of the P8Z77-I Deluxe and its rivals. The relative position of the Asus board changes from test to test, but the overall results are close enough that we can essentially call them a wash.

Serial ATA performance


TR RoboBench

TR developer extraordinaire Bruno “morphine” Ferreira created RoboBench, a scripted file copy benchmark that relies on Windows’ built-in robocopy command to execute eight parallel file transfer threads. The movie file set contains eight similarly sized files totaling 5.6GB, while the mixed set has a diverse collection of 14,000 files that adds up to 10.6GB.

With only one exception, the boards offer pretty much identical performance across our SATA tests. The Zotac manages to eke out a small lead in RoboBench’s write speed test, but only with the mixed file set. Even then, the delta works out to only about a 5% advantage.

USB performance


CrystalDiskMark highlights the impact of Asus’ USAP boost for the ASMedia controller. This chip’s random I/O performance improves several-fold when the feature is enabled. The USAP mode also improves the controller’s performance with sequential transfers, but not by enough to match the Intel solution built into the Z77 platform. The Intel implementation’s sequential read performance is particularly strong in this test.

TR RoboBench

The Intel solution doesn’t have nearly as big of a lead over the ASMedia chip when we switch to a multithreaded transfer using real-world files. The USAP-boosted ASMedia controller reigns supreme here, and its advantage is especially large with our mixed file set.

PCI Express performance


The write speed numbers are a little lower than one might expect from the RevoDrive PCIe SSD we used for testing, but that’s probably because CrystalDiskMark uses randomized data that can’t take advantage of the write-compression mojo of the underlying SandForce controllers. There’s no appreciable difference in performance between the P8Z77-I Deluxe and the other two boards, though.

Ethernet performance


TR RoboBench

Nothing to see here, apart from the fact that the Zotac board has dual Ethernet controllers. Move along.

Analog audio signal quality

RightMark Audio Analyzer grades analog signal quality on a scale between “very poor” and “excellent.” We’ve translated those values to a numerical scale that starts at low of one and peaks at six. Higher values are better.

Our first set of results was gathered with the systems idling (apart from the RMAA app, of course). The second batch is based on tests conducted with the system under a combined CPU, GPU, and USB load.


  RightMark Audio Analyzer audio quality at idle: 24-bit/192kHz
  Frequency response Noise level Dynamic range THD THD + Noise IMD + Noise Stereo Crosstalk IMD at 10kHz Overall score
Asus P8Z77-I Deluxe 6 4 4 5 4 5 6 5 5
ASRock Z77E-ITX 6 5 5 5 4 4 5 5 5
Zotac Z77-ITX WiFi 6 4 4 5 3 4 5 5 4


  RightMark Audio Analyzer audio quality under load: 24-bit/192kHz
  Frequency response Noise level Dynamic range THD THD + Noise IMD + Noise Stereo Crosstalk IMD at 10kHz Overall score
Asus P8Z77-I Deluxe 2 1 1 2 1 1 1 1 1
ASRock Z77E-ITX 1 1 1 2 1 1 1 2 2
Zotac Z77-ITX WiFi 2 1 1 3 1 1 1 2 2

All the boards score much better at idle than they do under load, when the scores start hitting the bottom of our scale. Admittedly, though, our load test is a worst-case scenario. The P8Z77-I Deluxe doesn’t fare substantially better or worse than its competition at idle or under load.


The P8Z77-I Deluxe is one heck of a motherboard, and not just when compared to the other Mini-ITX options. This puppy is equipped to run with the big dogs. It also overclocks like a boss. Apart from a few PCI Express and memory slots, you really aren’t losing out on much when compared to full-sized desktop models. In some respects, the Deluxe actually delivers more features and functionality than enthusiast-oriented ATX models from other manufacturers.

Windows software is the one area where Asus really outclasses its rivals. AI Suite is simply excellent. Indeed, it’s good enough that most enthusiasts will have little need to poke around in the firmware interface. Asus has done a good job there, too, but the firmware doesn’t stand out as much, perhaps because the competition is starting to get its act together on that front. We’ve been told by folks in the know that Asus is working on new innovations for its firmware interface, and we’re eager to see what’s in store. Let’s hope there’s no more MultiCore Enhancement nonsense.

A quick look at the P8Z77-I Deluxe’s spec sheet confirms that it has all the important features you’d want for a Mini-ITX build, including lots of I/O capacity, robust integrated audio, wireless networking and peripheral support, and the ability to accept full-sized graphics cards. Some alternatives boast similar capabilities, but they don’t necessarily include the little touches, like the wiring harness that makes front-panel connections a breeze or the easily accessible CMOS reset button that could save you a lot of headache.

The USB Boost software is a nice addition, too—one that conveys a real-world speed advantage over competing solutions. Otherwise, you won’t find many performance differences between the Deluxe and other Z77 boards, be they Mini-ITX offerings or boards built on larger form factors.

Mini-ITX motherboards tend to command a bit of a price premium, and the Deluxe is more expensive than most. It rings in at $185 right now, and a near twin that adds Intel Wireless Display support can be had for another $15. Competing Mini-ITX boards based on the same platform sell for $130-165, so the Deluxe certainly isn’t a bargain.

You get what you pay for, though. The P8Z77-I Deluxe’s combination of thoughtful features, slick software, and easy overclocking is good enough to earn TR Recommended distinction.

Comments closed
    • obarthelemy
    • 10 years ago

    Don’t you guys ever test reasonnably-priced boards ? especially in the mini-TX segment, I’m guessing 99.9% of customers just want a hassle-free basic PC, not an ego-boosting mad-skillz-boasting pussywagon with blinking lights ?

    • SonicSilicon
    • 10 years ago

    boB’s your man!
    (Image 8 : [url<][/url<] )

    • willmore
    • 10 years ago

    Where’s the hardware pr0n? I want to see massive heatsinks, huge video card stuffed into tight slots, and hot-hot memory!

    • willmore
    • 10 years ago

    If you want me to test anything for you, please let me know, I’d be glad to help.

    • oldDummy
    • 10 years ago

    Great article.
    This is a good, well made motherboard.
    Only problems I’ve had is serving it’s needs for speed.
    PSU fell apart on me and caused hard to solve problems.
    My case selection leaves little room for mandated CPU cooling,
    It does well /ok with a stock Intel cooler.
    I’m not thrilled with the 1155 socket, but it offers great support for that ilk.
    All considered, nice setup.

    • zzz
    • 10 years ago

    I’m down for that, but without the +gaming. How about just a tiny PC to do what a $100 WDTV Live can do, but without the horrendous lag, losing usernames and passwords and with a lot more control over how well it plays media? It’s a media PC, drop gaming on it entirely.You have a phone for casual gaming, and I say that specifically because you can stream your casual game to your big screen tv through a tiny media PC.

    • flip-mode
    • 10 years ago

    That’s good to know, and disappointing. I’d love to see TR do a mATX roundup. I’ll have to continue my search, then.

    • Washer
    • 10 years ago

    The Define Mini’s terrible front fan filter design will be a far more regular annoyance than that drive cage issue for the TJ08-E.

    Also, the Define Mini is larger than some ATX cases and it’s heavier than the majority of them. It’s so large and heavy that’s there’s basically no benefit in using it over a similarly priced ATX case. It’s noise canceling qualities are overblown as well.

    I’ve owned the Define Mini, I gave it away. Wouldn’t buy again.

    • flip-mode
    • 10 years ago

    90-degree connectors worked for me too if I removed the cage, put on the connector, and then reinserted the cage, but I could not attache/detach a drive cable without removing the whole cage, even with a 90-degree connector.

    If there were no other options out there, that’d be one thing, but the Fractal Define R3 Mini doesn’t have any of those issues, so I’m going to give it a try on the next build I do. I’ve done 5 builds with the TJ08 and I’m just not willing to forgive the drive cage situation anymore.

    • oliviadub11a
    • 10 years ago
    • derFunkenstein
    • 10 years ago

    For a while there they were doing one kind of boutique build along with the mainstays. THis last system guide didn’t have anything like that. I’d be all for seeing a every-six-months mITX gaming build and opposite that mITX HTPC or whatever else.

    I think mITX is adorable, and it has all the expansion slot I need – just one for the graphics card.

    • Firestarter
    • 10 years ago

    Casual gaming you say? This one is equipped for some high-end gaming provided you can find a case to fit a 7970 or GTX680!

    • DPete27
    • 10 years ago

    I have the [url=<]Silverstone PS07B[/url<] which is the same as the TJ08-E except for the front panel which is plastic and uses two 120mm fans. I had no problem getting my 120mm tower-style heatsink in there with the fan on the front. Just had to use 90-degree SATA and power connectors.

    • jdaven
    • 10 years ago

    Not a single picture of the motherboard populated with RAM, CPU,heatsink, and video card?!?!?!

    • Dissonance
    • 10 years ago

    ASRock’s Turbo software is giving us some issues with RoboBench, and indeed the robocopy command by itself. We’re still sorting it out and will have more details in our review of the board.

    • willmore
    • 10 years ago

    I found the USB performance portion interesting as my recently purchased ASRock MB came with some ‘USB turbo’ software. Did your board just not come with it?

    I only did testing with a 32GB thumb drive (Patriot Supersonic Express), so there’s not as much absolute performance available as one would find with a SATA SSD in a USB3.0 enclosure, but here’s the data:

    ASMedia USB (turbo off) Sequential Read 114MB/s, Sequential Write 50MB/s
    ASMedia USB (turbo on) Sequential Read 125MB/s, Sequential Write 50MB/s
    Intel USB (turbo off) Sequential Read 185MB/s, Sequential Write 50MB/s
    Intel USB (turbo on) Sequential Read 184MB/s, Sequential Write 45MB/s

    My takeaway was going to be to stick to the Intel ports and leave turbo off, but turbo did seem to have one other effect that might make it worthwile. It increased random write by 50% which can make a pretty big difference for specific workloads. But, that’s just one synthetic benchmark, so I took it with a grain of salt.

    • anotherengineer
    • 10 years ago

    If Intel had ECC support in all their cpu’s imc you could use 16GB server memory

    • flip-mode
    • 10 years ago

    I can get by with 16 GB 99% of the time, and the other 1% I can arguably let slide, but it’s the principle of the thing that going with 2 DIMM slots leave 50% of the possible memory capacity off limits, and also puts off limits the possibility of starting with 2 DIMMs and adding 2 DIMMs later instead of taking memory out and leaving it in a drawer just to implement an upgrade.

    • derFunkenstein
    • 10 years ago

    2x8GB DIMMs not enough? I mean, I know you do highly-memory-intensive stuff, but 16GB won’t do right now?

    • flip-mode
    • 10 years ago

    I’ve done several builds (5 builds, to be precise) with the TJ08 and I’ve promised myself that I will not use that case anymore. Everything about that case is perfect except for 2 things: first, the 180mm fan is too loud even on the low setting (this can probably be attenuated with an additional fan controller). Second, the drive cage. The drive cage is ridiculously problematic. It’s bad, bad, bad. If you have a 120mm tower-style cooler, you MUST put your fan on the “pull” side rather than the “push” side of the heatsink because the drive cage is too close (unless you have no 3.5″ drives and just have an SSD then you could probably make it work). And it’s awkward in other ways beyond that too. And there’s no accommodation for SSDs – you need to use a 3.5″ adapter for you SSD. That’s not a big deal but it’s a pet peeve and something that a case of that caliber should not be ignoring.

    I would recommend looking at the Fractal Define mATX case. It’s a bit larger than the TJ08, but with that large size comes much better hard drive accommodation.

    Silverstone needs to address the problems with the drive cage in the TJ08. I wish the enthusiast community would start imploring them to do so.

    • flip-mode
    • 10 years ago

    I cannot do without 4 DIMM slots. I would love to go to mITX because it has everything I need, except for 4 DIMM slots. It bums me out.

    • derFunkenstein
    • 10 years ago

    Excellent thorough review. Looks like this board is an excellent candidate for a closed water cooler like Corsair’s line. Would be nice to see a pic or two in the gallery of how the board looked with whatever cooler it is you selected – did I just miss what you used to cool it somewhere?

    edit: derp.

    [quote<]Our Core i7-3770K CPU was strapped to a dual-fan Corsair H80 water cooler[/quote<]

    • Deanjo
    • 10 years ago

    Too bad they didn’t put a mSATA slot on it.

    • Bensam123
    • 10 years ago

    Nice review.

    “All the other important stuff, including per-core multipliers…”

    From using a P8Z77 that isn’t per core multiplier, but rather changes the multiplier based on how many cores are active. From what I’ve read Intel chips can’t do asynchronous multiplier changes, as I tried doing this myself with a bum core 3.

    • Shoki
    • 10 years ago

    Please add a section in the system guide that features super small form factor builds. SSD no optical drive. The smaller the better. Focused on Media Streaming and Casual Gaming.

    • BoilerGamer
    • 10 years ago

    I really love reading TR Motherboard reviews, especially for the high quality photos and socket area measurements(helps a lot in determining whether big heat-stink fits or if the vrm heatsink would block top radiator on a really tight case like Fractal R4. Nicely done and keep up the good work.

Pin It on Pinterest

Share This

Share this post with your friends!