Single page Print

All-new tweaking software
The last few generations of Gigabyte motherboards have come with a disjointed collection of Windows tuning utilities. Like the old firmware, all that's been scrapped for Haswell. Gigabyte has been working on its new EasyTune software since last summer, and the result is a bold departure from the company's previous tweaking applications.

EasyTune now consolidates system monitoring, overclocking, power tuning, and fan controls in a single app. The interface was modeled after Windows 8 tiles, which probably isn't something Gigabyte should have admitted. Despite being great for tablets, Modern UI tiles are one of Win8's most reviled features on the desktop. They feel a little clumsy in EasyTune, too, mostly because they're freaking huge. The default (and apparently smallest) window size is 1600x900, which makes the tiles massive compared to the average mouse pointer.

This isn't the first time we've seen a Gigabyte tuning utility with oversized UI elements. The old TouchBIOS app had a jumbo-sized interface, too. Apparently, someone in Gigabyte's software department thinks PC enthusiasts are using touchscreens.

Fortunately, tiles don't dominate the entire interface. The advanced control panels have reasonably sized widgets, and they squeeze in a lot of settings as a result. All the big-ticket overclocking options are available except for the base clock strap. There's a decent array of power options, as well. Individual settings have pull-down menus in addition to sliders, though there's no way to enter values directly with the keyboard.

If you don't like the color scheme, the UI accents can be changed from blue to green or orange. More color options are coming, too, perhaps to ensure users can match all those different highlights on Gigabyte's motherboards.

The Smart Fan section of EasyTune presents pre-baked profiles in addition to manual tuning controls. There's also a calibration routine that tests the RPM range of each fan connected to the board.

As in the firmware, the CPU, SYS1, and SYS2&3 fans are controlled separately. The interface lets you drag around five points on each spinner's speed profile. Since the duty cycle scale goes all the way down to 1%, fans can effectively be silenced when temperatures slip below a given threshold.

While tuning your cooling config, you'll want to keep an eye on system temperatures. EasyTune can do that with its integrated monitoring panel, which also tracks voltages and fan speeds in real time. I'm not a huge fan of how the monitoring window looks, especially since it suffers from the same oversizing that taints some other EasyTune elements.

EasyTune's auto-overclocker could also use some work. The automated tuner tests for stability as it ramps up clock speeds and voltages, but it reports higher frequencies than other utilities. CPU-Z and Intel's Turbo monitor both showed our CPU running 200MHz slower than the auto routine claimed during its iterative tuning process. In our first run, the auto-tuner settled on a supposed 4.9GHz final clock speed, but the CPU was actually running at only 3.9GHz.

Only manual tweaking delivered decent overclocking results on the Z87X-UD3H. The auto-tuner proved unreliable, and even EasyTune's pre-defined profiles were problematic. Our system wouldn't post with the medium and extreme presets, which should've taken the chip to 4.5 and 4.7GHz, respectively. We had a little more luck with the firmware's "CPU upgrade" preset for 4.5GHz, which was at least stable in Windows. However, that setting pumped almost 1.45V through the CPU. Throttling kicked in as soon as we fired up our stress test.

Our experience overclocking Haswell tells us the chip is particularly sensitive to higher voltages. Serious cooling is required beyond about 1.3V, so it's a little surprising that the preset overvolted the CPU so much. Even with a dual-fan Corsair H80 water cooler, our 4770K tends to throttle at voltages higher than 1.35V.

When turning up the clock manually, we ended up at 4.5GHz, which required 1.25V to maintain stability under load. Booting the board at 4.6GHz wasn't a problem, but it took 1.35V to keep BSODs at bay. While we were able to get that speed stable under load, CPU temperatures spiked over 90°C and invoked throttling. Backing off on the voltage allowed the CPU to maintain 4.6GHz for a few minutes, though our load test soon brought about a dreaded blue screen.

On the Asus Z87-PRO, we took the very same CPU up to 4.7GHz using identical hardware. The CPU was running on 1.35V in that config, but temperatures stayed under 90°C. Throttling wasn't a problem.

Based on what we've heard from mobo makers, there may be more overclocking variance with Haswell than there was with Ivy Bridge.