Single page Print

Command Center software
MSI has all-new Windows-based tweaking software for its 8-series motherboards. Command Center replaces the old Control Center utility, and like its predecessor, the app gets off to a slow start. According to my stopwatch, Command Center takes 11 seconds to load. Tweaking utilities typically spend a few seconds polling system variables upon startup, but MSI's software seem to take longer than everyone else's. You can practically reboot into the firmware in less time than it takes to load the Windows utility.

Once open, the Command Center interface feels a little awkward. While the transitions and animations are smooth, the organization is somewhat disjointed, and a lot of the options are buried in sub-menus accessible only through the Advanced button in the bottom left corner of the screen.

Making changes should be easy for newbies and seasoned enthusiasts alike, though. Sliders abound, and values can be entered directly with the keyboard.

Command Center has enough overclocking options to satisfy most users. The fan controls are also extensive. As in the firmware, all five fan headers can be controlled individually. MSI has also added a tuning mechanism that determines the actual speed range of each connected fan.

CPU and system fans are accessed via different windows, but the functionality is similar for both camps. Users can click and drag up to two points along each fan's profile.

The latest tweaking apps from Asus and Gigabyte offer many more manipulation points for each profile, making Command Center's fan controls feel a little limiting. Those competing solutions also allow fans to be spun down completely—a stark contrast with Command Center, which enforces a 20% minimum speed for CPU fans and a 50% baseline for system fans.

Monitoring system variables is essential when fine-tuning a system's cooling configuration, and Command Center's history function makes it easy. Voltages, temperatures, and fan speeds can be tracked and saved with a simple interface. If only the historical records could be exported to a CSV or other common file format for further analysis.

In a bit of a surprise, MSI has integrated Dataram's RAMDisk software into Command Center. Only a few clicks are required to set aside a portion of system memory as storage for one's page file, browser caches, temporary files, and anything else. DRAM storage is volatile, so you'll lose the contents of the drive if the power is cut. Fortunately, an automated routine backs up the contents of the RAM drive at regular intervals. The latest backup can be restored automatically after a reboot.

As much as I appreciate turning wicked-fast DRAM into system storage, SSDs make it awfully difficult to get excited about RAM disks. Flash-based drives offer practically instantaneous access times and cost a lot less per gig. They're also available in much higher capacities, and they retain data when powered down. Our experience with Control Center's RAMDisk component wasn't entirely trouble-free, either. Allocating 4GB of our test system's 16GB memory footprint produced a blue-screen error after we rebooted. We tried again with a smaller 1GB RAM drive and encountered no problems.

If you don't want to tweak system settings with Command Center, the Z87-GD65 Gaming provides an alternative: an MSI-branded version of Intel's Extreme Tuning Utility. The software has loads of overclocking options but is devoid of fan controls. With Intel getting out of the motherboard business, this may be the last time we see the XTU in action.

The Z87-GD65 Gaming supports overclocking via manual tuning and via its automatic OC Genie mechanism. OC Genie has two gears: the first took our Core i7-4770K to 4GHz on 1.1V, while the second pushed it to 4.2GHz on 1.2V. Both options cranked our Corsair Vengeance Pro memory up to its maximum rated speed of 2400MHz.

We've had the same Haswell CPU and Corsair H80 water cooler stable at 4.7GHz, so even OC Genie's second gear is fairly conservative. The auto-overclocking routine relies on pre-defined profiles and can't adapt to the individual characteristics of each CPU. At least the OC Genie configurations were stable, though. We've used more aggressive auto-tuning routines that produced configs that caused blue screens or throttling under load. It makes sense for auto-tuning mechanisms to do too little rather than too much.

Manual tuning remains the best way to get the most out of your CPU, so we ventured into the firmware to fiddle with the multiplier directly. We started at 4.2GHz and decided to let the motherboard choose the CPU voltage automatically. It didn't choose wisely; the system booted but blue-screened after a few minutes under load. Feeding the CPU 1.25V in the firmware banished the BSOD, and we were soon in pursuit of higher frequencies.

Along the way to our 4.6GHz final speed, we discovered that CPU-Z's voltage readings are completely bogus for Z87-GD65 Gaming. The voltages displayed by Command Center more closely matched what we set in the firmware, although they were consistently about 25 millivolts higher.

Haswell overclocking seems to be largely dependent on voltage. Too little, and the chip becomes unstable under load. Too much, and the CPU temperature climbs high enough to invoke throttling. On the Z87-GD65 Gaming, we hit 4.6GHz with the CPU voltage set to 1.3V. The CPU temperature spiked to 85°C, but we didn't detect any throttling. The next step up the multiplier ladder required 1.375V to avoid BSODs under load—enough of an increase to push the CPU temperature past 90°C and provoke throttling.

We managed a throttle-free 4.7GHz with identical hardware on Asus' Z87-PRO and reached 4.5GHz on Gigabyte's Z87X-UD3H. Based on those results, the Z87-GD65 Gaming appears to have competitive overclocking chops.