Single page Print

The Core i9-7900X and LGA 2066 in the flesh
We've already touched on the Core X CPU family and the X299 platform in depth, but it's good to get an up-close look at the Core i9-7900X and Asus Prime X299-Deluxe motherboard that Intel has provided us for testing. 

Clockwise from upper left: Core i7-5960X, Core i7-6950X, Core i9-7900X, Core i7-7700K, Ryzen 5 1700X

Outwardly, little has changed that would help us identify the Core i9-7900X at first glance. The eagle-eyed will note more rounded corners on the edges of the integrated heat spreader, but that's about it.

From left to right: Core i7-5960X, Core i7-6950X, Core i9-7900X

Flipping these chips over reveals a dense forest of surface-mounted components, but it's otherwise hard to notice the extra 55 lands on the Core i9-7900X. If you want to count, we'll wait.

That outward similarity might lead one to believe that LGA 2011 and LGA 2066 chips are interchangeable among X99 and X299 motherboards, and the LGA 2066 socket doesn't help. The dimensions of the socket are the same as those of LGA 2011, but chips for that socket absolutely will not work with LGA 2066. Don't make an expensive mistake by eyeballing it. The only things that builders can carry over from LGA 2011 systems are their DDR4 kits and cooling hardware.

Intel sent us home with Asus' ultra-ritzy Prime X299-Deluxe motherboard to host the Core i9-7900X. This board boasts everything one might want out of a high-end platform: four USB 3.1 Gen 2 ports, built-in 802.11ac and 802.11ad Wi-Fi, tasteful RGB LEDs, and a bevy of PCIe x16 slots. Asus also offers two M.2 slots, one of which allows gumstick SSDs to stand up vertically for better cooling. Even if both M.2 slots are occupied, the horizontal M.2 SSD can still enjoy plenty of heat-dissipation potential thanks to an integrated heatsink for the slot and chipset. This mobo even comes with a Thunderbolt 3 card and an add-on fan control board with several extra headers.

Our testing methods
As always, we did our best to collect clean test numbers. We ran each of our benchmarks at least three times, and we've reported the median result. Our test systems were configured like so:

Processor Ryzen 7 1800X
Motherboard Gigabyte Aorus AX370-Gaming 5
Chipset AMD X370
Memory size 16 GB (2 DIMMs)
Memory type G.Skill Trident Z DDR4 SDRAM
Memory speed 3866 MT/s (rated)
3200 MT/s (actual)
Memory timings 15-15-15-35 1T
System drive Intel 750 Series 400GB NVMe SSD


Processor Intel Core i7-5960X Intel Core i7-6950X Intel Core i9-7900X
Intel Core i9-7900X
Intel Core i7-7700K
Motherboard Gigabyte GA-X99-Designare EX Asus Prime X299-Deluxe Gigabyte Aorus GA-Z270X-Gaming 8
Chipset Intel X99 X299 Z270
Memory size 32GB
Memory type G.Skill Trident Z
G.Skill Trident Z
G.Crucial Ballistix Elite
G.Skill Trident Z
G.Skill Trident Z
Memory speed 3600 MT/s (rated)
2666 MT/s (actual)
3200 MT/s
2666 MT/s 3200 MT/s 3866 MT/s (rated)
3200 MT/s (actual)
Memory timings 15-15-15-35 2T
16-18-18-38 2T
16-17-17-37 2T 16-18-18-38 2T 15-15-15-35 2T
System drive Corsair Neutron XT 480GB SATA SSD Samsung 960 EVO 500GB NVMe SSD Samsung 850 Pro 512GB SATA SSD Samsung 960 EVO 500GB NVMe SSD

They all shared the same common elements:

Storage 2x Corsair Neutron XT 480GB SSD
1x Kingston HyperX 480GB SSD
Discrete graphics Nvidia GeForce GTX 1080 Ti Founders Edition
Graphics driver version GeForce 382.33
OS Windows 10 Pro with Creators Update
Power supply Seasonic Prime Titanium 1000W

Thanks to Intel, Corsair, Kingston, Asus, Gigabyte, Cooler Master, G.Skill, and AMD for helping us to outfit our test rigs with some of the finest hardware available.

Some further notes on our testing methods:

  • The test systems' Windows desktops were set at a resolution of 3840x2160 in 32-bit color. Vertical refresh sync (vsync) was disabled in the graphics driver control panel.

  • For our Ryzen systems, we used the AMD Ryzen Balanced power plan included with the company's most recent chipset drivers. We left our Intel systems on Windows' default Balanced power plan.

The tests and methods we employ are usually publicly available and reproducible. If you have questions about our methods, hit our forums to talk with us about them.