Single page Print

AMD's Radeon RX Vega 64 and RX Vega 56 graphics cards reviewed

Radeons return to the high-end graphics market

AMD's Vega for gamers is finally here. The Radeon RX Vega 64 and RX Vega 56 mark AMD's return to the high end of the graphics-card world. After a long, long stretch wherein 2015's Radeon R9 Fury X and R9 Fury were asked to hold the fort against Nvidia's Pascal onslaught, the company is relieving them with what promises to be competition for Nvidia's long-dominant GeForce GTX 1080 and GeForce GTX 1070.

The Vega 10 GPU that's riding in on those cards is a massive and massively complex piece of silicon. It packs 12.5 billion transistors into a 486 mm² die fabricated on GlobalFoundries' 14nm LPP FinFET process. (For comparison, the Nvidia GP102 chip aboard the GTX 1080 Ti and friends is a similarly massive 12 billion transistors on a 471 mm² die.)  The card's compute resources are organized into 64 "Next-gen Compute Units." Each of these hosts 64 stream processors for a total of 4096. The full Vega 10 chip has 256 texture units and 64 ROPs, too.

While the basic organization of Vega 10 may sound similar to Fiji before it, the similarities largely end at those broad outlines. I would love to explore Vega's many changes and capabilities in more depth, but when you have two days and change to review two brand-new graphics cards in the wake of testing and writing for a CPU review, stuff has to be left on the cutting-room floor, and a deep dive on Vega's new talents is one of them. We've known broadly what the new bits of Vega would be since January, however, so my architecture introduction is as good a place as any to start if you need to catch up. I'll be trying to add more information to this article as time goes on, but AMD should have a white paper available soon with full architectural details if you want to know much, much more.

The Radeon RX Vega 64 and RX Vega 56
The implementations of the Vega 10 GPU that will be available to consumers were revealed at SIGGRAPH a couple weeks ago, but to recap, AMD will be selling the fully-enabled Vega 10 GPU aboard the Radeon RX Vega 64 in both air- and liquid-cooled varieties. The Radeon Vega 56, on the other hand, loses eight NCUs to the world's tiniest chainsaw, and it'll only be available as an air-cooled card in its reference form. Curiously, AMD left all 64 ROPs intact on both the RX Vega 64 and RX Vega 56, meaning the cuts to the 56 may hurt less than they otherwise might.

GTX 970 1050 1178 56 104 1664 224+32 224 GB/s 3.5+0.5GB 145W
GTX 980 1126 1216 64 128 2048 256 224 GB/s 4 GB 165W
GTX 980 Ti 1002 1075 96 176 2816 384 336 GB/s 6 GB 250W
Titan X (Maxwell) 1002 1075 96 192 3072 384 336 GB/s 12 GB 250W
GTX 1070 1506 1683 64 120 1920 256 259 GB/s 8GB 150W
GTX 1080 1607 1733 64 160 2560 256 320 GB/s 8GB 180W
GTX 1080 Ti 1480 1582 88 224 3584 352 484 GB/s 11GB 250W
Titan Xp 1480? 1582 96 240 3840 384 547 GB/s 12GB 250W
R9 Fury X --- 1050 64 256 4096 1024 512 GB/s 4GB 275W
Radeon RX Vega 64
1247 1546 64 256 4096 2048 484 GB/s 8GB 295W
Radeon RX Vega 64
1406 1677 64 256 4096 2048 484 GB/s 8GB 345W
Radeon RX Vega 56 1156 1471 64 224 3584 2048 410 GB/s 8GB 210W

Both cards also ship with 8GB of HBM2 memory on board. That memory communicates with the Vega 10 chip across a 2048-bit bus. AMD doesn't disclose as much, but on the RX Vega 64 cards, that HBM2 runs at an effective rate of 1890 MT/s, and on the RX Vega 56, it runs at about 1600 MT/s.

  Peak pixel
fill rate


Asus R9 290X 67 185/92 4.2 5.9 346
Radeon R9 295 X2 130 358/179 8.1 11.3 640
Radeon R9 Fury X 67 269/134 4.2 8.6 512
GeForce GTX 780 Ti 37 223/223 4.6 5.3 336
Gigabyte GTX 980 85 170/170 5.3 5.4 224
GeForce GTX 980 Ti 95 189/189 6.5 6.1 336
GeForce Titan X 103 206/206 6.5 6.6 336
GeForce GTX 1070 108 202/202 5.0 7.0 259
GeForce GTX 1080 111 277/277 6.9 8.9 320
GeForce GTX 1080 Ti 139 354/354 9.5 11.3 484
GeForce Titan X (Pascal) 147 343/343 9.2 11.0 480
Radeon RX Vega 64 (air) 99 396/198 6.2 12.7 484
Radeon RX Vega 64 (liquid) 107 429/215 6.7 13.7 484
Radeon RX Vega 56 94 330/165 5.9 10.5 410

We didn't have time (yet) ahead of publication to run our fancy Beyond3D test suite, so here are some potential peak rates for the RX Vega family. Compared to the GTX 1080, the RX Vega 64s trail slightly in pixel fill and peak rasterization rates, but they bring a prodigious array of shader and texturing power to the table, along with much higher memory bandwidth. The RX Vega 56 similarly trails and trounces the GTX 1070 in these theoretical peak rates. Our tests will tease out whether those theoretical victories translate into real performance shortly.

AMD's reference design for both the air-cooled RX Vega 64 and RX Vega 56 uses the same black shroud with an axial fan exhausting air directly out of the rear of the card. While this design may bear some similarities to the Radeon RX 480 before it, they're ony skin-deep. The shroud on this card is mostly metal and features a full metal backplate, as well. The Radeon logo on the side of the card lights up with red LEDs when the card is on.

One neat little touch from the R9 Fury X returns on board the RX Vegas: the "GPU Tach." This line of red LEDs (or blue, if you flip a DIP switch) will show you your GPU's occupancy, presuming you can see it from your desk or other site of sitting. The LEDs can also be turned off.

The Radeon RX Vega 56 will list for $399, or $20 more than the GTX 1070's original $379 suggested price. The RX Vega 64 air-cooled card will sticker for $499, or the same as the GTX 1080's most recent suggested price.  Both cards are also available as limited editions and as parts of "Radeon Packs," which we described in more detail in our RX Vega reveal. We've been talking about RX Vega for ages, so now it's time to shut up and share performance numbers.